Physics:Electromagnetic metasurface

From HandWiki
A liquid-tunable electromagnetic metasurface

An electromagnetic metasurface refers to a kind of artificial sheet material with sub-wavelength thickness. Metasurfaces can be either structured or unstructured with subwavelength-scaled patterns in the horizontal dimensions.[1][2][3]

In electromagnetic theory, metasurfaces modulate the behaviors of electromagnetic waves through specific boundary conditions rather than constitutive parameters in three-dimensional (3D) space, which is commonly exploited in natural materials and metamaterials. Metasurfaces may also refer to the two-dimensional counterparts of metamaterials.[4][5] There are also 2.5D metasurfaces that involve the third dimension as additional degree of freedom for tailoring their functionality.[6]

Definitions

Metasurfaces have been defined in several ways by researchers.

1, “An alternative approach that has gained increasing attention in recent years deals with one- and two-dimensional (1D and 2D) plasmonic arrays with subwavelength periodicity, also known as metasurfaces. Due to their negligible thickness compared to the wavelength of operation, metasurfaces can (near resonances of unit cell constituents) be considered as an interface of discontinuity enforcing an abrupt change in both the amplitude and phase of the impinging light”.[7]

2, “Our results can be understood using the concept of a metasurface, a periodic array of scattering elements whose dimensions and periods are small compared with the operating wavelength”.[8]

3, “Metasurfaces based on thin films”. A highly absorbing ultrathin film on a substrate can also be considered as a metasurface, with properties not occurring in natural materials.[3] Following this definition, the thin metallic films such as that in superlens are also the early type of metasurfaces.[9]

History

The research of electromagnetic metasurfaces has a long history. Early in 1902, Robert W. Wood found that the reflection spectra of subwavelength metallic grating had dark areas. This unusual phenomenon was named Wood's anomaly and led to the discovery of the surface plasmon polariton (SPP),[10] a particular electromagnetic wave excited at metal surfaces. Subsequently, another important phenomenon, the Levi-Civita relation,[11] was introduced, which states that a subwavelength-thick film can result in a dramatic change in electromagnetic boundary conditions.

Generally speaking, metasurfaces could include some traditional concepts in the microwave spectrum, such as frequency selective surfaces (FSS), impedance sheets, and even Ohmic sheets. In the microwave regime, the thickness of these metasurfaces can be much smaller than the wavelength of operation (for example, 1/1000 of the wavelength) since the skin depth could be minimal for highly conductive metals. Recently, some novel phenomena were demonstrated, such as ultra-broadband coherent perfect absorption. The results showed that a 0.3 nm thick film could absorb all electromagnetic waves across the RF, microwave, and terahertz frequencies.[12][13][14]

In optical applications, an anti-reflective coating could also be regarded as a simple metasurface, as first observed by Lord Rayleigh.

In recent years, several new metasurfaces have been developed, including plasmonic metasurfaces,[15][4][7][16][17] metasurfaces based on geometric phases,[18][19] metasurfaces based on impedance sheets,[20][21] and glide-symmetric metasurfaces.[22]

Applications

One of the most important applications of metasurfaces is to control a wavefront of electromagnetic waves by imparting local, gradient phase shifts to the incoming waves, which leads to a generalization of the ancient laws of reflection and refraction.[18] In this way, a metasurface can be used as a planar lens,[23][24] illumination lens,[25] planar hologram,[26] vortex generator,[27] beam deflector, axicon and so on.[19][28]

Besides the gradient metasurface lenses, metasurface-based superlenses offer another degree of control of the wavefront by using evanescent waves. With surface plasmons in the ultrathin metallic layers, perfect imaging and super-resolution lithography could be possible, which breaks the common assumption that all optical lens systems are limited by diffraction, a phenomenon called the diffraction limit.[29][30]

Another promising application is in the field of stealth technology. A target's radar cross-section (RCS) has conventionally been reduced by either radiation-absorbent material (RAM) or by purpose shaping of the targets such that the scattered energy can be redirected away from the source. Unfortunately, RAMs have narrow frequency-band functionality, and purpose shaping limits the aerodynamic performance of the target. Metasurfaces have been synthesized that redirect scattered energy away from the source using either array theory [31][32][33] or the generalized Snell's law.[34][35] This has led to aerodynamically favorable shapes for the targets with reduced RCS.

Metasurface can also be integrated with optical waveguides for controlling guided electromagnetic waves.[36][37] Applications for meta-waveguides such as integrated waveguide mode converters,[37] structured-light generations,[38][39] versatile multiplexers,[40][41] and photonic neural networks[42] can be enabled.

In addition, metasurfaces are also applied in electromagnetic absorbers, polarization converters, and spectrum filters. Metasurface-empowered novel bioimaging and biosensing devices have also emerged and been reported recently.[43][44][45][46] For many optically based bioimaging devices, their bulk footprint and heavy physical weight have limited their usage in clinical settings.[47][48]

Simulation

To analyze such planar optical metasurfaces efficiently, prism-based algorithms allow for triangular prismatic space discretization, which is optimal for planar geometries. The prism-based algorithm has fewer elements than conventional tetrahedral methods, bringing higher computational efficiency.[49] A simulation toolkit has been released online, enabling users to efficiently analyze metasurfaces with customized pixel patterns.[50]

Optical characterization

Characterizing metasurfaces in the optical domain requires advanced imaging methods since the involved optical properties often include both phase and polarization properties. Recent works suggest that vectorial ptychography, a recently developed computational imaging method, appears very relevant. It combines the Jones matrix mapping with a microscopic lateral resolution, even on large specimens.[51]

References

  1. Bomzon, Ze’ev; Kleiner, Vladimir; Hasman, Erez (2001-09-15). "Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings" (in EN). Optics Letters 26 (18): 1424–1426. doi:10.1364/OL.26.001424. ISSN 1539-4794. PMID 18049626. Bibcode2001OptL...26.1424B. https://opg.optica.org/ol/abstract.cfm?uri=ol-26-18-1424. 
  2. Bomzon, Ze’ev; Biener, Gabriel; Kleiner, Vladimir; Hasman, Erez (2002-07-01). "Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings" (in EN). Optics Letters 27 (13): 1141–1143. doi:10.1364/OL.27.001141. ISSN 1539-4794. PMID 18026387. Bibcode2002OptL...27.1141B. https://opg.optica.org/ol/abstract.cfm?uri=ol-27-13-1141. 
  3. 3.0 3.1 Yu, Nanfang; Capasso, Federico (2014). "Flat optics with designer metasurfaces". Nat. Mater. 13 (2): 139–150. doi:10.1038/nmat3839. PMID 24452357. Bibcode2014NatMa..13..139Y. 
  4. 4.0 4.1 Zeng, S. (2015). "Graphene-gold metasurface architectures for ultrasensitive plasmonic biosensing". Advanced Materials 27 (40): 6163–6169. doi:10.1002/adma.201501754. PMID 26349431. Bibcode2015AdM....27.6163Z. https://www.researchgate.net/publication/281618671. 
  5. Quevedo-Teruel, O. (2019). "Roadmap on metasurfaces". Journal of Optics 21 (7): 073002. doi:10.1088/2040-8986/ab161d. Bibcode2019JOpt...21g3002Q. https://iopscience.iop.org/article/10.1088/2040-8986/ab161d. 
  6. Solomonov, A.I. (2023). "2.5D switchable metasurfaces". Optics & Laser Technology 161: 109122. doi:10.1016/j.optlastec.2023.109122. Bibcode2023OptLT.16109122S. 
  7. 7.0 7.1 Pors, Anders; Bozhevolnyi, Sergey I. (2013). "Plasmonic metasurfaces for efficient phase control in reflection". Optics Express 21 (22): 27438–27451. doi:10.1364/OE.21.027438. PMID 24216965. Bibcode2013OExpr..2127438P. 
  8. Li, Ping-Chun; Zhao, Yang; Alu, Andrea; Yu, Edward T. (2011). "Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface". Appl. Phys. Lett. 99 (3): 221106. doi:10.1063/1.3614557. Bibcode2011ApPhL..99c1106B. 
  9. Pendry, J. B. (2000). "Negative Refraction Makes a Perfect Lens". Physical Review Letters 85 (18): 3966–9. doi:10.1103/PhysRevLett.85.3966. PMID 11041972. Bibcode2000PhRvL..85.3966P. http://www.cmth.ph.ic.ac.uk/photonics/Newphotonics/pdf/negref2.pdf. Retrieved 2015-05-21. 
  10. Wood, R. W. (1902). "On a remarkable case of uneven distribution of light in a diffraction grating spectrum". Proc. Phys. Soc. Lond. 18 (1): 269–275. doi:10.1088/1478-7814/18/1/325. Bibcode1902PPSL...18..269W. https://zenodo.org/record/1431485. 
  11. Senior, T. (1981). "Approximate boundary conditions". IEEE Trans. Antennas Propag. 29 (5): 826–829. doi:10.1109/tap.1981.1142657. Bibcode1981ITAP...29..826S. 
  12. Pu, M. (17 January 2012). "Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination". Optics Express 20 (3): 2246–2254. doi:10.1364/oe.20.002246. PMID 22330464. Bibcode2012OExpr..20.2246P. 
  13. Li, S. (2015). "Broadband Perfect Absorption of Ultrathin Conductive Films with Coherent Illumination: Super Performance of Electromagnetic Absorption". Physical Review B 91 (22): 220301. doi:10.1103/PhysRevB.91.220301. Bibcode2015PhRvB..91v0301L. 
  14. Taghvaee, H.R. (2017). "Circuit modeling of graphene absorber in terahertz band". Optics Communications 383: 11–16. doi:10.1016/j.optcom.2016.08.059. Bibcode2017OptCo.383...11T. 
  15. Ni, X.; Emani, N. K.; Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. (2012). "Broadband light bending with plasmonic nanoantennas". Science 335 (6067): 427. doi:10.1126/science.1214686. PMID 22194414. Bibcode2012Sci...335..427N. https://www.science.org/doi/10.1126/science.1214686. 
  16. Verslegers, Lieven; Fan, Shanhui (2009). "Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film". Nano Lett. 9 (1): 235–238. doi:10.1021/nl802830y. PMID 19053795. Bibcode2009NanoL...9..235V. 
  17. Kildishev, A. V.; Boltasseva, A.; Shalaev, V. M. (2013). "Planar photonics with metasurfaces". Science 339 (6125): 1232009. doi:10.1126/science.1232009. PMID 23493714. https://www.science.org/doi/10.1126/science.1232009. 
  18. 18.0 18.1 Yu, Nanfang; Genevet, Patrice; Mikhail Kats; Aieta, Francesco; Tetienne, Jean-Philippe; Capasso, Federico; Gaburro, Zeno (2011). "Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction". Science 334 (6054): 333–337. doi:10.1126/science.1210713. PMID 21885733. Bibcode2011Sci...334..333Y. 
  19. 19.0 19.1 Lin, Dianmin; Fan, Pengyu; Hasman, Erez; Brongersma, Mark L. (2014). "Dielectric gradient metasurface optical elements". Science 345 (6194): 298–302. doi:10.1126/science.1253213. PMID 25035488. Bibcode2014Sci...345..298L. 
  20. Pfeiffer, Carl; Grbic, Anthony (2013). "Metamaterial Huygens' Surfaces: Tailoring Wave Fronts with Reflectionless Sheets". Phys. Rev. Lett. 110 (2): 197401. doi:10.1103/PhysRevLett.110.027401. PMID 23383937. Bibcode2013PhRvL.110b7401W. 
  21. Felbacq, Didier (2015). "Impedance operator description of a metasurface". Mathematical Problems in Engineering 2015: 473079. doi:10.1155/2015/473079. 
  22. Quevedo-Teruel, Oscar (2021). "On the benefits of glide symmetries for microwave devices". IEEE Journal of Microwaves 1: 457–469. doi:10.1109/JMW.2020.3033847. 
  23. Aieta, Francesco; Genevet, Patrice; Kats, Mikhail; Yu, Nanfang; Blanchard, Romain; Gaburro, Zeno; Capasso, Federico (2012). "Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces". Nano Letters 12 (9): 4932–6. doi:10.1021/nl302516v. PMID 22894542. Bibcode2012NanoL..12.4932A. 
  24. Ni, X.; Ishii, S.; Kildishev, A.V.; Shalaev, V.M. (2013). "Ultra-thin, planar, Babinet-inverted plasmonic metalenses". Light: Science & Applications 2 (4): e72. doi:10.1038/lsa.2013.28. Bibcode2013LSA.....2E..72N. https://engineering.purdue.edu/~shalaev/Publication_list_files/LSA_Ni_2013.pdf. 
  25. I. Moreno, M. Avendaño-Alejo, and C. P. Castañeda-Almanza, "Nonimaging metaoptics," Opt. Lett. 45, 2744-2747 (2020). https://doi.org/10.1364/OL.391357
  26. Ni, X.; Kildishev, A.V.; Shalaev, V.M. (2013). "Metasurface holograms for visible light". Nature Communications 4: 1–6. doi:10.1038/ncomms3807. Bibcode2013NatCo...4.2807N. https://engineering.purdue.edu/~shalaev/Publication_list_files/Metasurface%20holograms%20for%20visible%20light%20(2013).pdf. 
  27. Genevet, Patrice; Yu, Nanfang; Aieta, Francesco; Lin, Jiao; Kats, Mikhail; Blanchard, Romain; Scully, Marlan; Gaburro, Zeno et al. (2012). "Ultra-thin plasmonic optical vortex plate based on phase discontinuities". Applied Physics Letters 100 (1): 013101. doi:10.1063/1.3673334. Bibcode2012ApPhL.100a3101G. 
  28. Xu, T. (2008). "Plasmonic deflector". Opt. Express 16 (7): 4753–4759. doi:10.1364/oe.16.004753. PMID 18542573. Bibcode2008OExpr..16.4753X. 
  29. Luo, Xiangang; Ishihara, Teruya (2004). "Surface plasmon resonant interference nanolithography technique". Appl. Phys. Lett. 84 (23): 4780. doi:10.1063/1.1760221. Bibcode2004ApPhL..84.4780L. 
  30. Fang, Nicholas; Lee, Hyesog; Sun, Cheng; Zhang, Xiang (2005). "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens". Science 308 (5721): 534–7. doi:10.1126/science.1108759. PMID 15845849. Bibcode2005Sci...308..534F. 
  31. Modi, A. Y.; Alyahya, M. A.; Balanis, C. A.; Birtcher, C. R. (2019). "Metasurface-Based Method for Broadband RCS Reduction of Dihedral Corner Reflectors with Multiple Bounces". IEEE Transactions on Antennas and Propagation 68 (3): 1. doi:10.1109/TAP.2019.2940494. 
  32. Modi, A. Y.; Balanis, C. A.; Birtcher, C. R.; Shaman, H. (2019). "New Class of RCS-Reduction Metasurfaces Based on Scattering Cancellation Using Array Theory". IEEE Transactions on Antennas and Propagation 67 (1): 298–308. doi:10.1109/TAP.2018.2878641. Bibcode2019ITAP...67..298M. 
  33. Modi, A. Y.; Balanis, C. A.; Birtcher, C. R.; Shaman, H. (2017). "Novel Design of Ultrabroadband Radar Cross Section Reduction Surfaces using Artificial Magnetic Conductors". IEEE Transactions on Antennas and Propagation 65 (10): 5406–5417. doi:10.1109/TAP.2017.2734069. Bibcode2017ITAP...65.5406M. 
  34. Li, Yongfeng; Zhang, Jieqiu; Qu, Shaobo; Wang, Jiafu; Chen, Hongya; Xu, Zhuo; Zhang, Anxue (2014). "Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces". Applied Physics Letters 104 (22): 221110. doi:10.1063/1.4881935. Bibcode2014ApPhL.104v1110L. 
  35. Yu, Nanfang; Genevet, Patrice; Kats, Mikhail A.; Aieta, Francesco; Tetienne, Jean-Philippe; Capasso, Federico; Gaburro, Zeno (October 2011). "Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction". Science 334 (6054): 333–337. doi:10.1126/science.1210713. PMID 21885733. Bibcode2011Sci...334..333Y. 
  36. Meng, Yuan; Chen, Yizhen; Lu, Longhui; Ding, Yimin; Cusano, Andrea; Fan, Jonathan A.; Hu, Qiaomu; Wang, Kaiyuan et al. (2021-11-22). "Optical meta-waveguides for integrated photonics and beyond" (in en). Light: Science & Applications 10 (1): 235. doi:10.1038/s41377-021-00655-x. ISSN 2047-7538. PMID 34811345. Bibcode2021LSA....10..235M. 
  37. 37.0 37.1 Li, Zhaoyi; Kim, Myoung-Hwan; Wang, Cheng; Han, Zhaohong; Shrestha, Sajan; Overvig, Adam Christopher; Lu, Ming; Stein, Aaron et al. (July 2017). "Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces" (in en). Nature Nanotechnology 12 (7): 675–683. doi:10.1038/nnano.2017.50. ISSN 1748-3395. PMID 28416817. Bibcode2017NatNa..12..675L. https://www.nature.com/articles/nnano.2017.50. 
  38. Guo, Xuexue; Ding, Yimin; Chen, Xi; Duan, Yao; Ni, Xingjie (2020-07-17). "Molding free-space light with guided wave–driven metasurfaces" (in en). Science Advances 6 (29): eabb4142. doi:10.1126/sciadv.abb4142. ISSN 2375-2548. PMID 32832643. Bibcode2020SciA....6.4142G. 
  39. He, Tiantian; Meng, Yuan; Liu, Zhoutian; Hu, Futai; Wang, Rui; Li, Dan; Yan, Ping; Liu, Qiang et al. (2021-11-22). "Guided mode meta-optics: metasurface-dressed waveguides for arbitrary mode couplers and on-chip OAM emitters with a configurable topological charge" (in en). Optics Express 29 (24): 39406–39418. doi:10.1364/OE.443186. ISSN 1094-4087. PMID 34809306. Bibcode2021OExpr..2939406H. https://opg.optica.org/abstract.cfm?URI=oe-29-24-39406. 
  40. Cheben, Pavel; Halir, Robert; Schmid, Jens H.; Atwater, Harry A.; Smith, David R. (August 2018). "Subwavelength integrated photonics" (in en). Nature 560 (7720): 565–572. doi:10.1038/s41586-018-0421-7. ISSN 1476-4687. PMID 30158604. Bibcode2018Natur.560..565C. https://www.nature.com/articles/s41586-018-0421-7. 
  41. Meng, Yuan; Liu, Zhoutian; Xie, Zhenwei; Wang, Ride; Qi, Tiancheng; Hu, Futai; Kim, Hyunseok; Xiao, Qirong et al. (2020-04-01). "Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface" (in en). Photonics Research 8 (4): 564. doi:10.1364/PRJ.384449. ISSN 2327-9125. https://opg.optica.org/abstract.cfm?URI=prj-8-4-564. 
  42. Wu, Changming; Yu, Heshan; Lee, Seokhyeong; Peng, Ruoming; Takeuchi, Ichiro; Li, Mo (2021-01-04). "Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network" (in en). Nature Communications 12 (1): 96. doi:10.1038/s41467-020-20365-z. ISSN 2041-1723. PMID 33398011. Bibcode2021NatCo..12...96W. 
  43. A. Arbabi (2016). "Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations". Nature Communications 7: 13682–89. doi:10.1038/ncomms13682. PMID 27892454. Bibcode2016NatCo...713682A. 
  44. W. Chen (2018). "A broadband achromatic metalens for focusing and imaging in the visible". Nature Nanotechnology 13 (3): 220–226. doi:10.1038/s41565-017-0034-6. PMID 29292382. Bibcode2018NatNa..13..220C. https://www.nature.com/articles/s41565-017-0034-6. 
  45. S. Zhang (2020). "Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective". Nanophotonics 10 (1): 259–293. doi:10.1515/nanoph-2020-0373. Bibcode2020Nanop..10..373Z. https://www.degruyter.com/document/doi/10.1515/nanoph-2020-0373/html. 
  46. L. Jiang (2017). "Multifunctional hyperbolic nanogroove metasurface for submolecular detection". Small 13 (30): 1700600–10. doi:10.1002/smll.201700600. PMID 28597602. https://www.researchgate.net/publication/317501397. 
  47. M. Beruete (2019). "Terahertz sensing based on metasurfaces". Advanced Optical Materials 8 (3): 1900721–28. doi:10.1002/adom.201900721. https://onlinelibrary.wiley.com/doi/abs/10.1002/adom.201900721. 
  48. R. Ahmed (2020). "Tunable Fano‐resonant metasurfaces on a disposable plastic‐template for multimodal and multiplex biosensing". Advanced Materials 32 (19): 1907160–78. doi:10.1002/adma.201907160. PMID 32201997. Bibcode2020AdM....3207160A. 
  49. Mai, Wending; Campbell, Sawyer D.; Whiting, Eric B.; Kang, Lei; Werner, Pingjuan L.; Chen, Yifan; Werner, Douglas H. (2020-10-01). "Prismatic discontinuous Galerkin time domain method with an integrated generalized dispersion model for efficient optical metasurface analysis" (in EN). Optical Materials Express 10 (10): 2542–2559. doi:10.1364/OME.399414. ISSN 2159-3930. Bibcode2020OMExp..10.2542M. https://www.osapublishing.org/ome/abstract.cfm?uri=ome-10-10-2542. 
  50. Mai, Wending; Werner, Douglas (2020). prism-DGTD with GDM to analyze pixelized metasurfaces. doi:10.17605/OSF.IO/2NA4F. https://osf.io/2na4f/. 
  51. Song, Qinghua; Baroni, Arthur; Sawant, Rajath; Ni, Peinan; Brandli, Virginie; Chenot, Sébastien; Vézian, Stéphane; Damilano, Benjamin et al. (December 2020). "Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces" (in en). Nature Communications 11 (1): 2651. doi:10.1038/s41467-020-16437-9. ISSN 2041-1723. PMID 32461637. Bibcode2020NatCo..11.2651S.