Physics:Gell-Mann and Low theorem

From HandWiki
Short description: Theorem concerning quantum field theory ground states

In quantum field theory, the Gell-Mann and Low theorem is a mathematical statement that allows one to relate the ground (or vacuum) state of an interacting system to the ground state of the corresponding non-interacting theory. It was proved in 1951 by Murray Gell-Mann and Francis E. Low. The theorem is useful because, among other things, by relating the ground state of the interacting theory to its non-interacting ground state, it allows one to express Green's functions (which are defined as expectation values of Heisenberg-picture fields in the interacting vacuum) as expectation values of interaction picture fields in the non-interacting vacuum. While typically applied to the ground state, the Gell-Mann and Low theorem applies to any eigenstate of the Hamiltonian. Its proof relies on the concept of starting with a non-interacting Hamiltonian and adiabatically switching on the interactions.

History

The theorem was proved first by Gell-Mann and Low in 1951, making use of the Dyson series.[1] In 1969, Klaus Hepp provided an alternative derivation for the case where the original Hamiltonian describes free particles and the interaction is norm bounded.[2] In 1989, G. Nenciu and G. Rasche proved it using the adiabatic theorem.[3] A proof that does not rely on the Dyson expansion was given in 2007 by Luca Guido Molinari.[4]

Statement of the theorem

Let |Ψ0 be an eigenstate of H0 with energy E0 and let the 'interacting' Hamiltonian be H=H0+gV, where g is a coupling constant and V the interaction term. We define a Hamiltonian Hϵ=H0+eϵ|t|gV which effectively interpolates between H and H0 in the limit ϵ0+ and |t|. Let UϵI denote the evolution operator in the interaction picture. The Gell-Mann and Low theorem asserts that if the limit as ϵ0+ of

|Ψϵ(±)=UϵI(0,±)|Ψ0Ψ0|UϵI(0,±)|Ψ0

exists, then |Ψϵ(±) are eigenstates of H.

Note that when applied to, say, the ground-state, the theorem does not guarantee that the evolved state will be a ground state. In other words, level crossing is not excluded.

Proof

As in the original paper, the theorem is typically proved making use of Dyson's expansion of the evolution operator. Its validity however extends beyond the scope of perturbation theory as has been demonstrated by Molinari. We follow Molinari's method here. Focus on Hϵ and let g=eϵθ. From Schrödinger's equation for the time-evolution operator

it1Uϵ(t1,t2)=Hϵ(t1)Uϵ(t1,t2)

and the boundary condition Uϵ(t2,t2)=1 we can formally write

Uϵ(t1,t2)=1+1it2t1dt(H0+eϵ(θ|t|)V)Uϵ(t,t2).

Focus for the moment on the case 0t1t2. Through a change of variables τ=t+θ we can write

Uϵ(t1,t2)=1+1iθ+t2θ+t1dτ(H0+eϵτV)Uϵ(τθ,t2).

We therefore have that

θUϵ(t1,t2)=ϵggUϵ(t1,t2)=t1Uϵ(t1,t2)+t2Uϵ(t1,t2).

This result can be combined with the Schrödinger equation and its adjoint

it1Uϵ(t2,t1)=Uϵ(t2,t1)Hϵ(t1)

to obtain

iϵggUϵ(t1,t2)=Hϵ(t1)Uϵ(t1,t2)Uϵ(t1,t2)Hϵ(t2).

The corresponding equation between HϵI,UϵI is the same. It can be obtained by pre-multiplying both sides with eiH0t1/, post-multiplying with eiH0t2/ and making use of

UϵI(t1,t2)=eiH0t1/Uϵ(t1,t2)eiH0t2/.

The other case we are interested in, namely t2t10 can be treated in an analogous fashion and yields an additional minus sign in front of the commutator (we are not concerned here with the case where t1,2 have mixed signs). In summary, we obtain

(Hϵ,t=0E0±iϵgg)UϵI(0,±)|Ψ0=0.

We proceed for the negative-times case. Abbreviating the various operators for clarity

iϵgg(U|Ψ0)=(HϵE0)U|Ψ0.

Now using the definition of Ψϵ we differentiate and eliminate derivatives g(U|Ψ0) using the above expression, finding

iϵgg|Ψϵ=1Ψ0|U|Ψ0(HϵE0)U|Ψ0U|Ψ0Ψ0|U|Ψ02Ψ0|(HϵE0)U|Ψ0=(HϵE0)|Ψϵ|ΨϵΨ0|HϵE0|Ψϵ=[HϵE]|Ψϵ.

where E=E0+Ψ0|HϵH0|Ψϵ. We can now let ϵ0+ as by assumption the gg|Ψϵ in left hand side is finite. We then clearly see that |Ψϵ is an eigenstate of H and the proof is complete.

References

  1. Gell-Mann, Murray; Low, Francis (1951-10-15). "Bound States in Quantum Field Theory" (in en). Physical Review 84 (2): 350–354. doi:10.1103/PhysRev.84.350. ISSN 0031-899X. Bibcode1951PhRv...84..350G. https://link.aps.org/doi/10.1103/PhysRev.84.350. 
  2. Hepp, Klaus (1969) (in fr). Théorie de la renormalisation. Lecture Notes in Physics. 2. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/bfb0108958. ISBN 978-3-540-04640-0. http://link.springer.com/10.1007/BFb0108958. 
  3. G, Nenciu; G, Rasche (1989). "Adiabatic theorem and Gell-Mann-Low formula". Helvetica Physica Acta 62: 372. doi:10.5169/SEALS-116035. https://www.e-periodica.ch/digbib/view?pid=hpa-001:1989:62::1122. 
  4. Molinari, Luca Guido (2007). "Another proof of Gell-Mann and Low's theorem" (in en). Journal of Mathematical Physics 48 (5): 052113. doi:10.1063/1.2740469. ISSN 0022-2488. Bibcode2007JMP....48e2113M. http://aip.scitation.org/doi/10.1063/1.2740469. 
  • A.L. Fetter and J.D. Walecka: "Quantum Theory of Many-Particle Systems", McGraw–Hill (1971)