Physics:Generalized Helmholtz theorem

From HandWiki

The generalized Helmholtz theorem is the multi-dimensional generalization of the Helmholtz theorem which is valid only in one dimension. The generalized Helmholtz theorem reads as follows. Let

𝐩=(p1,p2,...,ps),
𝐪=(q1,q2,...,qs),

be the canonical coordinates of a s-dimensional Hamiltonian system, and let

H(𝐩,𝐪;V)=K(𝐩)+φ(𝐪;V)

be the Hamiltonian function, where

K=i=1spi22m,

is the kinetic energy and

φ(𝐪;V)

is the potential energy which depends on a parameter V. Let the hyper-surfaces of constant energy in the 2s-dimensional phase space of the system be metrically indecomposable and let t denote time average. Define the quantities E, P, T, S, as follows:

E=K+φ,
T=2sKt,
P=φVt,
S(E,V)=logH(𝐩,𝐪;V)Eds𝐩ds𝐪.

Then:

dS=dE+PdVT.

Remarks

The thesis of this theorem of classical mechanics reads exactly as the heat theorem of thermodynamics. This fact shows that thermodynamic-like relations exist between certain mechanical quantities in multidimensional ergodic systems. This in turn allows to define the "thermodynamic state" of a multi-dimensional ergodic mechanical system, without the requirement that the system be composed of a large number of degrees of freedom. In particular the temperature T is given by twice the time average of the kinetic energy per degree of freedom, and the entropy S by the logarithm of the phase space volume enclosed by the constant energy surface (i.e. the so-called volume entropy).

References

Further reading

  • Helmholtz, H., von (1884a). Principien der Statik monocyklischer Systeme. Borchardt-Crelle’s Journal für die reine und angewandte Mathematik, 97, 111–140 (also in Wiedemann G. (Ed.) (1895) Wissenschafltliche Abhandlungen. Vol. 3 (pp. 142–162, 179–202). Leipzig: Johann Ambrosious Barth).
  • Helmholtz, H., von (1884b). Studien zur Statik monocyklischer Systeme. Sitzungsberichte der Kö niglich Preussischen Akademie der Wissenschaften zu Berlin, I, 159–177 (also in Wiedemann G. (Ed.) (1895) Wissenschafltliche Abhandlungen. Vol. 3 (pp. 163–178). Leipzig: Johann Ambrosious Barth).
  • Boltzmann, L. (1884). Über die Eigenschaften monocyklischer und anderer damit verwandter Systeme.Crelles Journal, 98: 68–94 (also in Boltzmann, L. (1909). Wissenschaftliche Abhandlungen (Vol. 3, pp. 122–152), F. Hasenöhrl (Ed.). Leipzig. Reissued New York: Chelsea, 1969).
  • Khinchin, A. I. (1949). Mathematical foundations of statistical mechanics. New York: Dover.
  • Gallavotti, G. (1999). Statistical mechanics: A short treatise. Berlin: Springer.
  • Campisi, M. (2005) On the mechanical foundations of thermodynamics: The generalized Helmholtz theorem Studies in History and Philosophy of Modern Physics 36: 275–290