Physics:Generating function
In physics, and more specifically in Hamiltonian mechanics, a generating function is, loosely, a function whose partial derivatives generate the differential equations that determine a system's dynamics. Common examples are the partition function of statistical mechanics, the Hamiltonian, and the function which acts as a bridge between two sets of canonical variables when performing a canonical transformation.
In canonical transformations
There are four basic generating functions, summarized by the following table:[1]
Generating function | Its derivatives |
---|---|
[math]\displaystyle{ F= F_1(q, Q, t) \,\! }[/math] | [math]\displaystyle{ p = ~~\frac{\partial F_1}{\partial q} \,\! }[/math] and [math]\displaystyle{ P = - \frac{\partial F_1}{\partial Q} \,\! }[/math] |
[math]\displaystyle{ F= F_2(q, P, t) = F_1 + QP \,\! }[/math] | [math]\displaystyle{ p = ~~\frac{\partial F_2}{\partial q} \,\! }[/math] and [math]\displaystyle{ Q = ~~\frac{\partial F_2}{\partial P} \,\! }[/math] |
[math]\displaystyle{ F= F_3(p, Q, t) =F_1 - qp \,\! }[/math] | [math]\displaystyle{ q = - \frac{\partial F_3}{\partial p} \,\! }[/math] and [math]\displaystyle{ P = - \frac{\partial F_3}{\partial Q} \,\! }[/math] |
[math]\displaystyle{ F= F_4(p, P, t) =F_1 - qp + QP \,\! }[/math] | [math]\displaystyle{ q = - \frac{\partial F_4}{\partial p} \,\! }[/math] and [math]\displaystyle{ Q = ~~\frac{\partial F_4}{\partial P} \,\! }[/math] |
Example
Sometimes a given Hamiltonian can be turned into one that looks like the harmonic oscillator Hamiltonian, which is
- [math]\displaystyle{ H = aP^2 + bQ^2. }[/math]
For example, with the Hamiltonian
- [math]\displaystyle{ H = \frac{1}{2q^2} + \frac{p^2 q^4}{2}, }[/math]
where p is the generalized momentum and q is the generalized coordinate, a good canonical transformation to choose would be
-
[math]\displaystyle{ P = pq^2 \text{ and }Q = \frac{-1}{q}. \, }[/math]
(
)
This turns the Hamiltonian into
- [math]\displaystyle{ H = \frac{Q^2}{2} + \frac{P^2}{2}, }[/math]
which is in the form of the harmonic oscillator Hamiltonian.
The generating function F for this transformation is of the third kind,
- [math]\displaystyle{ F = F_3(p,Q). }[/math]
To find F explicitly, use the equation for its derivative from the table above,
- [math]\displaystyle{ P = - \frac{\partial F_3}{\partial Q}, }[/math]
and substitute the expression for P from equation (1), expressed in terms of p and Q:
- [math]\displaystyle{ \frac{p}{Q^2} = - \frac{\partial F_3}{\partial Q} }[/math]
Integrating this with respect to Q results in an equation for the generating function of the transformation given by equation (1):
[math]\displaystyle{ F_3(p,Q) = \frac{p}{Q} }[/math]
To confirm that this is the correct generating function, verify that it matches (1):
- [math]\displaystyle{ q = - \frac{\partial F_3}{\partial p} = \frac{-1}{Q} }[/math]
See also
References
- ↑ Goldstein, Herbert; Poole, C. P.; Safko, J. L. (2001). Classical Mechanics (3rd ed.). Addison-Wesley. pp. 373. ISBN 978-0-201-65702-9.
Further reading
- Goldstein, Herbert; Poole, C. P.; Safko, J. L. (2001). Classical Mechanics (3rd ed.). Addison-Wesley. ISBN 978-0-201-65702-9.