Physics:Gurzhi effect

From HandWiki
Gurzhi effect
The different transport regimes are shown. Blue circle is the electron travelling in a conductor with the width d. Red stars are corresponded to the collisions with lost of total momentum of the electron system.

The Gurzhi effect was theoretically predicted[1][2] by Radii Gurzhi in 1963, and it consists of decreasing of electric resistance [math]\displaystyle{ R }[/math] of a finite size conductor with increasing of its temperature [math]\displaystyle{ T }[/math] (i.e. the situation [math]\displaystyle{ dR/dT \lt 0 }[/math] for some temperature interval). Gurzhi effect usually being considered as the evidence of electron hydrodynamic transport[3][4][5][6][7][8] in conducting media. The mechanism of Gurzhi effect is the following. The value of the resistance of the conductor is inverse to the [math]\displaystyle{ l_{lost}=\min\{l_{boundary}, l_V\} }[/math] — a mean free path corresponding to the momentum loss from the electrons+phonons system[math]\displaystyle{ R\propto \frac{1}{l_{lost}}, }[/math]where [math]\displaystyle{ l_{boundary} }[/math] is the average distance which electron pass between two consecutive interactions with a boundary, and [math]\displaystyle{ l_{V} }[/math] is a mean free path corresponding to other possibilities of momentum loss. The electron reflection from the boundary is assumed to be diffusive.

When temperature is low we have ballistic transport with [math]\displaystyle{ l_{ee} \gg d }[/math], [math]\displaystyle{ l_{lost} \approx l_{boundary} \approx d }[/math], where [math]\displaystyle{ d }[/math] is a width of the conductor, [math]\displaystyle{ l_{ee} }[/math]is a mean free path corresponding to effective normal electron-electron collisions (i.e. collisions without total electrons+phonons momentum loss). For low temperatures phonon emitted by electron quickly interacts with another electron without loss of total electron+phonons momentum and [math]\displaystyle{ l_{ee}\approx l_{ep} }[/math], where [math]\displaystyle{ l_{ep}\propto T^{-5} }[/math]is a mean free path corresponding to the electron-phonon collisions. Also we assume [math]\displaystyle{ d \ll l_V }[/math]. Thus the resistance for lowest temperatures is a constant [math]\displaystyle{ R \propto d^{-1} }[/math](see the picture). The Gurzhi effect appears when the temperature is increased to have [math]\displaystyle{ l_{ee} \ll d }[/math] . In this regime the electron diffusive length between two consecutive interactions with the boundary can be considered as momentum loss free path: [math]\displaystyle{ l_{lost}\approx l_{boundary} \approx d^2/l_{ee} }[/math], and the resistance is proportional to [math]\displaystyle{ R \propto l_{ee}(T)/d^2 \propto T^{-5}d^{-2} }[/math], and thus we have a negative derivative [math]\displaystyle{ dR/dT \lt 0 }[/math] . Therefore, Gurzhi effect can be observed when [math]\displaystyle{ l_{ee}\ll d \ll d^2/l_{ee} \ll l_V }[/math].

Gurzhi effect corresponds to unusual situation when electrical resistance depends on a frequency of normal collisions. As one can see this effect appears due to the presence of a boundaries with finite characteristic size [math]\displaystyle{ d }[/math]. Later Gurzhi's group discovered a special role of electron hydrodynamics in a spin transport.[9][10] In such a case magnetic inhomogeneity plays role of a "boundary" with spin-diffusion length[11] as a characteristic size instead of [math]\displaystyle{ d }[/math] as before. This magnetic inhomogeneity stops electrons of the one spin component which becomes an effective scatterers for electrons of another spin component. In this case magnetoresistance of a conductor depends on the frequency of normal electron-electron collisions as well as in the Gurzhi effect.

References

  1. Gurzhi, R. N. (1963). "Minimum of resistance in impurity-free conductors". J Exp Theor Phys 17: 521. 
  2. Gurzhi, R. N. (1968). "HYDRODYNAMIC EFFECTS IN SOLIDS AT LOW TEMPERATURE". Soviet Physics Uspekhi 11 (2): 255–270. doi:10.1070/PU1968v011n02ABEH003815. 
  3. Yu, Z. -Z.; Haerle, M.; Zwart, J. W.; Bass, J.; Pratt, W. P.; Schroeder, P. A. (1984). "Negative Temperature Derivative of Resistivity in Thin Potassium Samples: The Gurzhi Effect?". Phys. Rev. Lett. 52 (5): 368–371. doi:10.1103/PhysRevLett.52.368. 
  4. de Jong, M. J. M.; Molenkamp, L. W. (1995). "Hydrodynamic electron flow in high-mobility wires". Phys. Rev. B 51 (19): 13389–13402. doi:10.1103/PhysRevB.51.13389. 
  5. Alekseev, P. S. (2016). "Negative Magnetoresistance in Viscous Flow of Two-Dimensional Electrons". Phys. Rev. Lett. 117 (16): 166601. doi:10.1103/PhysRevLett.117.166601. 
  6. Narozhny, Boris N.; Gornyi, Igor V.; Mirlin, Alexander D.; Schmalian, Jörg (2017). "Hydrodynamic Approach to Electronic Transport in Graphene". Annalen der Physik 529 (11): 1700043. doi:10.1002/andp.201700043. 
  7. Moll, Philip J. W.; Kushwaha, Pallavi; Nandi, Nabhanila; Schmidt, Burkhard; Mackenzie, Andrew P. (2016). "Evidence for hydrodynamic electron flow in PdCoO2". Science 351 (6277): 1061–1064. doi:10.1126/science.aac8385. 
  8. Scaffidi, Thomas; Nandi, Nabhanila; Schmidt, Burkhard; Mackenzie, Andrew P.; Moore, Joel E. (2017). "Hydrodynamic Electron Flow and Hall Viscosity". Phys. Rev. Lett. 118 (22): 226601. doi:10.1103/PhysRevLett.118.226601. 
  9. Gurzhi, R. N.; Kalinenko, A. N.; Kopeliovich, A. I.; Pyshkin, P. V.; Yanovsky, A. V. (2006). "Dynamics of a spin-polarized electron liquid: Spin oscillations with a low decay". Phys. Rev. B 73 (15): 153204. doi:10.1103/PhysRevB.73.153204. 
  10. Gurzhi, R. N.; Kalinenko, A. N.; Kopeliovich, A. I.; Pyshkin, P. V.; Yanovsky, A. V. (2011). "Electrical resistance of spatially varying magnetic interfaces. The role of normal scattering". Low Temperature Physics 37 (2): 149–156. doi:10.1063/1.3556662. 
  11. Bass, J.; Pratt, W. P. (2007). "Spin-diffusion lengths in metals and alloys, and spin-flipping at metal/metal interfaces: an experimentalist's critical review". Journal of Physics: Condensed Matter 19: 183201. doi:10.1088/0953-8984/19/18/183201.