Physics:Hopfion

From HandWiki

A hopfion is a topological soliton.[1][2][3][4] It is a stable three-dimensional localised configuration of a three-component field n=(nx,ny,nz) with a knotted topological structure. They are the three-dimensional counterparts of 2D skyrmions, which exhibit similar topological properties in 2D. Hopfions are widely studied in many physical systems over the last half century.[5]

The soliton is mobile and stable: i.e. it is protected from a decay by an energy barrier. It can be deformed but always conserves an integer Hopf topological invariant. It is named after the German mathematician, Heinz Hopf.

A model that supports hopfions was proposed as follows:[1]

H=(𝐧)2+(ϵijk𝐧i𝐧×j𝐧)2

The terms of higher-order derivatives are required to stabilize the hopfions.

Stable hopfions were predicted within various physical platforms, including Yang–Mills theory,[6] superconductivity[7][8] and magnetism.[9][10][11][4]

Experimental observation

Hopfions have been observed experimentally in chiral colloidal magnetic materials,[2] in chiral liquid crystals,[12][13] in Ir/Co/Pt multilayers using X-ray magnetic circular dichroism[14] and in the polarization of free-space monochromatic light.[15][16]

In chiral magnets, a helical-background variant of the hopfion has been theoretically predicted to occur within the spiral magnetic phase, where it was called a "heliknoton".[17] In recent years, the concept of a "fractional hopfion" has also emerged where not all preimages of magnetisation have a nonzero linking.[18][19]

See also

References

  1. 1.0 1.1 "Stable knot-like structures in classical field theory". Nature 387 (6628): 58–61. 1997. doi:10.1038/387058a0. Bibcode1997Natur.387...58F. 
  2. 2.0 2.1 "Static three-dimensional topological solitons in fluid chiral ferromagnets and colloids". Nature Materials 16 (4): 426–432. 2017. doi:10.1038/nmat4826. PMID 27992419. Bibcode2017NatMa..16..426A. https://www.nature.com/articles/nmat4826. 
  3. Topological solitons. Cambridge: Cambridge University Press. 2004. doi:10.1017/CBO9780511617034. ISBN 0-511-21141-4. OCLC 144618426. 
  4. 4.0 4.1 "Creation and observation of Hopfions in magnetic multilayer systems". Nature Communications 12 (1): 1562. March 2021. doi:10.1038/s41467-021-21846-5. PMID 33692363. Bibcode2021NatCo..12.1562K. 
  5. "Hopfions in modern physics. Hopfion description". http://hopfion.com. 
  6. "Partially Dual Variables in SU(2) Yang-Mills Theory". Physical Review Letters 82 (8): 1624–1627. 1999. doi:10.1103/PhysRevLett.82.1624. Bibcode1999PhRvL..82.1624F. 
  7. "Hidden symmetry and knot solitons in a charged two-condensate Bose system". Physical Review B 65 (10). 2002. doi:10.1103/PhysRevB.65.100512. Bibcode2002PhRvB..65j0512B. 
  8. "Stable Hopf-Skyrme topological excitations in the superconducting state". Physical Review B 100 (9). 2019. doi:10.1103/PhysRevB.100.094515. Bibcode2019PhRvB.100i4515R. 
  9. "Skyrmion Knots in Frustrated Magnets". Physical Review Letters 118 (24). June 2017. doi:10.1103/PhysRevLett.118.247203. PMID 28665663. Bibcode2017PhRvL.118x7203S. 
  10. "Magnetic hopfions in solids". APL Materials 10 (11). 2022. doi:10.1063/5.0099942. Bibcode2022APLM...10k1113R. 
  11. "Static Hopf solitons and knotted emergent fields in solid-state noncentrosymmetric magnetic nanostructures". Physical Review Letters 121. 2018. doi:10.1103/PhysRevLett.121.187201. PMID 32794865. Bibcode2020PhRvL.125e7201V. 
  12. "Diversity of knot solitons in liquid crystals manifested by linking of preimages in torons and hopfions". Physical Review X 7 (1). 2017. doi:10.1103/PhysRevX.7.011006. Bibcode2017PhRvX...7a1006A. https://journals.aps.org/prx/abstract/10.1103/PhysRevX.7.011006. 
  13. https://newscenter.lbl.gov/2021/04/08/spintronics-tech-a-hopfion-away/ The Spintronics Technology Revolution Could Be Just a Hopfion Away – ALS News
  14. "Creation and observation of Hopfions in magnetic multilayer systems". Nature Communications 12 (1): 1562. March 2021. doi:10.1038/s41467-021-21846-5. PMID 33692363. Bibcode2021NatCo..12.1562K. 
  15. "Particle-like topologies in light". Nature Communications 12 (1): 6785. November 2021. doi:10.1038/s41467-021-26171-5. PMID 34811373. Bibcode2021NatCo..12.6785S. 
  16. Ehrmanntraut, Daniel; Droop, Ramon; Sugic, Danica; Otte, Eileen; Dennis, Mark; Denz, Cornelia (June 2023). "Optical second-order skyrmionic hopfion". Optica 10 (6): 725–731. doi:10.1364/OPTICA.487989. Bibcode2023Optic..10..725E. 
  17. Voinescu, Robert; Tai, Jung-Shen B.; Smalyukh, Ivan I. (27 July 2020). "Hopf Solitons in Helical and Conical Backgrounds of Chiral Magnetic Solids". Physical Review Letters 125 (5). doi:10.1103/PhysRevLett.125.057201. PMID 32794865. Bibcode2020PhRvL.125e7201V. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.057201. 
  18. Yu, Xiuzhen; Liu, Yizhou; Iakoubovskii, Konstantin V.; Nakajima, Kiyomi; Kanazawa, Naoya; Nagaosa, Naoto; Tokura, Yoshinori (May 2023). "Realization and Current-Driven Dynamics of Fractional Hopfions and Their Ensembles in a Helimagnet FeGe" (in en). Advanced Materials 35 (20). doi:10.1002/adma.202210646. ISSN 0935-9648. Bibcode2023AdM....3510646Y. 
  19. Azhar, Maria; Kravchuk, Volodymyr P.; Garst, Markus (12 April 2022). "Screw Dislocations in Chiral Magnets". Physical Review Letters 128 (15). doi:10.1103/PhysRevLett.128.157204. PMID 35499887. Bibcode2022PhRvL.128o7204A. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.157204.