Physics:Inverse Faraday effect
In optics, the inverse Faraday effect is the effect opposite to the Faraday effect. A static magnetization [math]\displaystyle{ \mathbf{M}(0) }[/math] is induced by an external oscillating electrical field with the frequency [math]\displaystyle{ \omega }[/math], which can be achieved with a high intensity laser pulse for example. The induced magnetization is proportional to the vector product of [math]\displaystyle{ \mathbf{E} }[/math] and [math]\displaystyle{ \mathbf{E}^* }[/math]: [math]\displaystyle{ \mathbf{M}(0)\propto[\mathbf{E}(\omega)\times\mathbf{E}^*(\omega)] }[/math]
From this equation we see that the circularly polarized light with the frequency [math]\displaystyle{ \omega }[/math] should induce a magnetization along the wave vector [math]\displaystyle{ \mathbf{k} }[/math]. Because [math]\displaystyle{ \mathbf{E} }[/math] is in the vector product, left- and right-handed polarization waves should induce magnetization of opposite signs.
The induced magnetization is comparable to the saturated magnetization of the media.
References
- Rodriguez, V.; Verreault, D.; Adamietz, F.; Kalafatis, A. "All-Optical Measurements of the Verdet Constant in Achiral and Chiral Liquids: Toward All-Optical Magnetic Spectroscopies". ACS Photonics 2022, 9, 7, 2510–2519. https://doi.org/10.1021/acsphotonics.2c00720
- Hertel, R. (2005). Microscopic theory of the inverse Faraday effect. Bibcode: 2005cond.mat..9060H.
- Kimel, A. V.; Kirilyuk, A.; Usachev, P. A.; Pisarev, R. V.; Balbashov, A. M.; Rasing, Th. (2005). "Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses". Nature 435 (7042): 655–657. doi:10.1038/nature03564. ISSN 0028-0836. PMID 15917826. Bibcode: 2005Natur.435..655K.
Original source: https://en.wikipedia.org/wiki/Inverse Faraday effect.
Read more |