Physics:Lee–Kesler method
The Lee–Kesler method [1] allows the estimation of the saturated vapor pressure at a given temperature for all components for which the critical pressure Pc, the critical temperature Tc, and the acentric factor ω are known.
Equations
- [math]\displaystyle{ \ln P_{\rm r} = f^{(0)} + \omega \cdot f^{(1)} }[/math]
- [math]\displaystyle{ f^{(0)}=5.92714 - \frac{6.09648}{T_{\rm r}} - 1.28862 \cdot \ln T_{\rm r} + 0.169347 \cdot T_{\rm r}^6 }[/math]
- [math]\displaystyle{ f^{(1)}=15.2518 - \frac{15.6875}{T_{\rm r}}-13.4721 \cdot \ln T_{\rm r} + 0.43577 \cdot T_{\rm r}^6 }[/math]
with
- [math]\displaystyle{ P_{\rm r}=\frac{P}{P_{\rm c}} }[/math] (reduced pressure) and [math]\displaystyle{ T_{\rm r}=\frac{T}{T_{\rm c}} }[/math] (reduced temperature).
Typical errors
The prediction error can be up to 10% for polar components and small pressures and the calculated pressure is typically too low. For pressures above 1 bar, that means, above the normal boiling point, the typical errors are below 2%. [2]
Example calculation
For benzene with
the following calculation for T=Tb results:
- Tr = 353.15 / 562.12 = 0.628247
- f(0) = -3.167428
- f(1) = -3.429560
- Pr = exp( f(0) + ω f(1) ) = 0.020354
- P = Pr * Pc = 99.69 kPa
The correct result would be P = 101.325 kPa, the normal (atmospheric) pressure. The deviation is -1.63 kPa or -1.61 %.
It is important to use the same absolute units for T and Tc as well as for P and Pc. The unit system used (K or R for T) is irrelevant because of the usage of the reduced values Tr and Pr.
See also
References
- ↑ Lee B.I., Kesler M.G., "A Generalized Thermodynamic Correlation Based on Three-Parameter Corresponding States", AIChE J., 21(3), 510-527, 1975
- ↑ Reid R.C., Prausnitz J.M., Poling B.E., "The Properties of Gases & Liquids", 4. Auflage, McGraw-Hill, 1988
- ↑ 3.0 3.1 Brunner E., Thies M.C., Schneider G.M., J.Supercrit.Fluids, 39(2), 160-173, 2006
- ↑ Silva L.M.C., Mattedi S., Gonzalez-Olmos R., Iglesias M., J.Chem.Thermodyn., 38(12), 1725-1736, 2006
- ↑ Dortmund Data Bank
Original source: https://en.wikipedia.org/wiki/Lee–Kesler method.
Read more |