Physics:Love number

From HandWiki
Short description: Parameters describing a planet's rigidity

The Love numbers (h, k, and l) are dimensionless parameters that measure the rigidity of a planetary body or other gravitating object, and the susceptibility of its shape to change in response to an external tidal potential.

In 1909, Augustus Edward Hough Love introduced the values h and k which characterize the overall elastic response of the Earth to the tides ― Earth tides or body tides.[1] Later, in 1912, Toshi Shida added a third Love number, l, which was needed to obtain a complete overall description of the solid Earth's response to the tides.[2]

Definitions

The Love number h is defined as the ratio of the body tide to the height of the static equilibrium tide;[3] also defined as the vertical (radial) displacement or variation of the planet's elastic properties. In terms of the tide generating potential [math]\displaystyle{ V(\theta, \phi )/g }[/math], the displacement is [math]\displaystyle{ h V(\theta, \phi)/g }[/math] where [math]\displaystyle{ \theta }[/math] is latitude, [math]\displaystyle{ \phi }[/math] is east longitude and [math]\displaystyle{ g }[/math] is acceleration due to gravity.[4] For a hypothetical solid Earth [math]\displaystyle{ h = 0 }[/math]. For a liquid Earth, one would expect [math]\displaystyle{ h = 1 }[/math]. However, the deformation of the sphere causes the potential field to change, and thereby deform the sphere even more. The theoretical maximum is [math]\displaystyle{ h = 2.5 }[/math]. For the real Earth, [math]\displaystyle{ h }[/math] lies between 0 and 1.

The Love number k is defined as the cubical dilation or the ratio of the additional potential (self-reactive force) produced by the deformation of the deforming potential. It can be represented as [math]\displaystyle{ k V(\theta, \phi)/g }[/math], where [math]\displaystyle{ k = 0 }[/math] for a rigid body.[4]

The Love number l represents the ratio of the horizontal (transverse) displacement of an element of mass of the planet's crust to that of the corresponding static ocean tide.[3] In potential notation the transverse displacement is [math]\displaystyle{ l \nabla (V(\theta, \phi))/g }[/math], where [math]\displaystyle{ \nabla }[/math] is the horizontal gradient operator. As with h and k, [math]\displaystyle{ l = 0 }[/math] for a rigid body.[4]

Values

According to Cartwright, "An elastic solid spheroid will yield to an external tide potential [math]\displaystyle{ U_2 }[/math] of spherical harmonic degree 2 by a surface tide [math]\displaystyle{ h_2U_2/g }[/math] and the self-attraction of this tide will increase the external potential by [math]\displaystyle{ k_2U_2 }[/math]."[5] The magnitudes of the Love numbers depend on the rigidity and mass distribution of the spheroid. Love numbers [math]\displaystyle{ h_n }[/math], [math]\displaystyle{ k_n }[/math], and [math]\displaystyle{ l_n }[/math] can also be calculated for higher orders of spherical harmonics.

For elastic Earth the Love numbers lie in the range: [math]\displaystyle{ 0.616 \leq h_2 \leq 0.624 }[/math], [math]\displaystyle{ 0.304 \leq k_2 \leq 0.312 }[/math] and [math]\displaystyle{ 0.084 \leq l_2 \leq 0.088 }[/math].[3]

For Earth's tides one can calculate the tilt factor as [math]\displaystyle{ 1 + k - h }[/math] and the gravimetric factor as [math]\displaystyle{ 1 + h - (3/2)k }[/math], where subscript two is assumed.[5]

Neutron stars are thought to have high rigidity in the crust, and thus a low Love number; [math]\displaystyle{ 0.05 \leq k_2 \leq 0.17 }[/math],[6][7] while black holes have vanishing Love numbers for all multipoles [math]\displaystyle{ k_\ell = 0 }[/math].[8][9][10] Measuring the Love numbers of compact objects in binary mergers is a key goal of gravitational-wave astronomy.

References

  1. Love Augustus Edward Hough. The yielding of the earth to disturbing forces 82 Proc. R. Soc. Lond. A 1909 http://doi.org/10.1098/rspa.1909.0008
  2. TOSHI SHIDA, On the Body Tides of the Earth, A Proposal for the International Geodetic Association, Proceedings of the Tokyo Mathematico-Physical Society. 2nd Series, 1911-1912, Volume 6, Issue 16, Pages 242-258, ISSN 2185-2693, doi:10.11429/ptmps1907.6.16_242.
  3. 3.0 3.1 3.2 "Tidal Deformation of the Solid Earth: A Finite Difference Discretization", S.K.Poulsen; Niels Bohr Institute, University of Copenhagen; p 24; [1]
  4. 4.0 4.1 4.2 Earth Tides; D.C.Agnew, University of California; 2007; 174
  5. 5.0 5.1 Tides: A Scientific History; David E. Cartwright; Cambridge University Press, 1999, ISBN:0-521-62145-3; pp 140–141,224
  6. Yazadjiev, Stoytcho S.; Doneva, Daniela D.; Kokkotas, Kostas D. (October 2018). "Tidal Love numbers of neutron stars in f(R) gravity" (in en). The European Physical Journal C 78 (10): 818. doi:10.1140/epjc/s10052-018-6285-z. PMID 30524193. Bibcode2018EPJC...78..818Y. 
  7. Hinderer, Tanja; Lackey, Benjamin D.; Lang, Ryan N.; Read, Jocelyn S. (23 June 2010). "Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral". Physical Review D 81 (12): 123016. doi:10.1103/PhysRevD.81.123016. Bibcode2010PhRvD..81l3016H. 
  8. Damour, Thibault; Nagar, Alessandro (2009-10-23). "Relativistic tidal properties of neutron stars" (in en). Physical Review D 80 (8). doi:10.1103/PhysRevD.80.084035. ISSN 1550-7998. https://link.aps.org/doi/10.1103/PhysRevD.80.084035. 
  9. Binnington, Taylor; Poisson, Eric (2009-10-14). "Relativistic theory of tidal Love numbers". Physical Review D 80 (8): 084018. doi:10.1103/PhysRevD.80.084018. https://link.aps.org/doi/10.1103/PhysRevD.80.084018. 
  10. Chia, Horng Sheng (2021-07-06). "Tidal deformation and dissipation of rotating black holes" (in en). Physical Review D 104 (2). doi:10.1103/PhysRevD.104.024013. ISSN 2470-0010. https://link.aps.org/doi/10.1103/PhysRevD.104.024013.