Physics:Metallization pressure

From HandWiki

Metallization pressure is the pressure required for a non-metallic chemical element to become a metal. Every material is predicted to turn into a metal if the pressure is high enough, and temperature low enough. Some of these pressures are beyond the reach of diamond anvil cells, and are thus theoretical predictions. Neon has the highest metallization pressure for any element. The value for phosphorus refers to pressurizing black phosphorus. The value for arsenic refers to pressurizing metastable black arsenic; grey arsenic, the standard state, is already a metallic conductor at standard conditions. No value is known or theoretically predicted for radon.

Z Element p, Mbar ref. type
1 hydrogen 3.9 3.9


[1] theoretical
2 helium 329 329


[2] theoretical
5 boron 1.6 1.6


[3][4] experimental
6 carbon 11 11


[5] theoretical
7 nitrogen 5 >> 5


[6] theoretical
8 oxygen 0.960 0.96


[7][8] experimental
9 fluorine 25 25


[9] theoretical
10 neon 2084 2084


[10] theoretical
14 silicon 0.120 0.12


experimental
15 phosphorus 0.048 0.048


[11] experimental
16 sulfur 0.830 0.83


[12] experimental
17 chlorine 2.0 2.0


[13] experimental
18 argon 5.1 5.1


[14] theoretical
32 germanium 0.110 0.11


[15] experimental
33 arsenic 0.022 0.022


[16] theoretical
34 selenium 0.230 0.23


[17] experimental
35 bromine 0.250 0.25


[18] experimental
36 krypton 3.1 3.1


[14][19] theoretical
52 tellurium 0.040 0.04


[20] experimental
53 iodine 0.160 0.16


[21] experimental
54 xenon 1.3 1.3


[22] experimental
86 radon 0 .


. .

See also

References

  1. McMinis, Jeremy; Clay, Raymond C.; Lee, Donghwa; Morales, Miguel A. (2015). "Molecular to Atomic Phase Transition in Hydrogen under High Pressure". Physical Review Letters 114 (10): 105305. doi:10.1103/PhysRevLett.114.105305. PMID 25815944. Bibcode2015PhRvL.114j5305M. 
  2. Monserrat, Bartomeu; Drummond, N. D.; Pickard, Chris J.; Needs, R. J. (2014). "Electron-Phonon Coupling and the Metallization of Solid Helium at Terapascal Pressures". Physical Review Letters 112 (5): 055504. doi:10.1103/PhysRevLett.112.055504. PMID 24580611. Bibcode2014PhRvL.112e5504M. 
  3. Eremets, M. I.; Struzhkin, V. V.; Mao, H.; Hemley, R. J. (2001). "Superconductivity in boron". Science 293 (5528): 272–274. doi:10.1126/science.1062286. 
  4. Zhao, Jijun; Lu, Jian Ping (2002). "Pressure-induced metallization in solid boron". Physical Review B 66 (9): 092101. doi:10.1103/PhysRevB.66.092101. Bibcode2002PhRvB..66i2101Z. 
  5. Correa, Alfredo A.; Bonev, Stanimir A.; Galli, Giulia (2006). "Carbon under extreme conditions: phase boundaries and electronic properties from first-principles theory". Proceedings of the National Academy of Sciences of the United States of America 103 (5): 1204–1208. doi:10.1073/pnas.0510489103. ISSN 0027-8424. PMID 16432191. Bibcode2006PNAS..103.1204C. 
  6. Ma, Yanming; Oganov, Artem R.; Li, Zhenwei; Xie, Yu; Kotakoski, Jani (2009). "Novel High Pressure Structures of Polymeric Nitrogen". Physical Review Letters 102 (6): 065501. doi:10.1103/PhysRevLett.102.065501. PMID 19257600. Bibcode2009PhRvL.102f5501M. 
  7. Akahama, Yuichi; Kawamura, Haruki; Häusermann, Daniel; Hanfland, Michael; Shimomura, Osamu (June 1995). "New High-Pressure Structural Transition of Oxygen at 96 GPa Associated with Metallization in a Molecular Solid". Physical Review Letters 74 (23): 4690–4694. doi:10.1103/PhysRevLett.74.4690. PMID 10058574. Bibcode1995PhRvL..74.4690A. 
  8. Elatresh, Sabri F.; Bonev, Stanimir A. (2020). "Stability and metallization of solid oxygen at high pressure". Physical Chemistry Chemical Physics 22 (22): 12577–12583. doi:10.1039/C9CP05267D. PMID 32452471. Bibcode2020PCCP...2212577E. 
  9. Olson, Mark A.; Bhatia, Shefali; Larson, Paul; Militzer, Burkhard (2020). "Prediction of chlorine and fluorine crystal structures at high pressure using symmetry driven structure search with geometric constraints". The Journal of Chemical Physics 153 (9): 094111. doi:10.1063/5.0018402. PMID 32891084. https://aip.scitation.org/doi/full/10.1063/5.0018402. Retrieved 13 December 2022. 
  10. Tang, Jun; Ao, Bingyun; Huang, Li; Ye, Xiaoqiu; Gu, Yunjun; Chen, Qifeng (2019). "Metallization and positive pressure dependency of bandgap in solid neon". The Journal of Chemical Physics 150 (11): 111103. doi:10.1063/1.5089489. PMID 30901987. Bibcode2019JChPh.150k1103T. 
  11. Okajima, Michio; Endo, Shoichi; Akahama, Yuichi; Narita, Shin-ichiro (1984). "Electrical Investigation of Phase Transition in Black Phosphorus under High Pressure". Japanese Journal of Applied Physics 23 (1): 15–19. doi:10.1143/JJAP.23.15. Bibcode1984JaJAP..23...15O. 
  12. Akahama, Y.; Kobayashi, M.; Kawamura, H. (1993). "Pressure-induced structural phase transition in sulfur at 83 GPa". Physical Review B 48 (10): 6862–6864. doi:10.1103/PhysRevB.48.6862. PMID 10006849. Bibcode1993PhRvB..48.6862A. 
  13. Dalladay-Simpson, Philip; Binns, Jack; Peña-Alvarez, Miriam; Donnelly, Mary-Ellen; Greenberg, Eran; Prakapenka, Vitali; Chen, Xiao-Jia; Gregoryanz, Eugene et al. (8 March 2019). "Band gap closure, incommensurability and molecular dissociation of dense chlorine" (in en). Nature Communications 10 (1): 1134. doi:10.1038/s41467-019-09108-x. ISSN 2041-1723. PMID 30850606. Bibcode2019NatCo..10.1134D. 
  14. 14.0 14.1 Kwon, I.; Collins, L.A.; Kress, J.D.; Troullier, N. (1995). "First-principles study of solid Ar and Kr under high compression". Physical Review B 52 (21): 15165–15169. doi:10.1103/PhysRevB.52.15165. PMID 9980870. Bibcode1995PhRvB..5215165K. 
  15. Vohra, Yogesh K.; Brister, Keith E.; Desgreniers, Serge; Ruoff, Arthur L.; Chang, K. J.; Cohen, Marvin L. (1986). "Phase-Transition Studies of Germanium to 1.25 Mbar". Physical Review Letters 56 (18): 1944–1947. doi:10.1103/PhysRevLett.56.1944. PMID 10032817. Bibcode1986PhRvL..56.1944V. 
  16. Li, Ruiping; Han, Nannan; Cheng, Yingchun; Huang, Wei (2019). "Pressure-induced metallization of black arsenic". Journal of Physics: Condensed Matter 31 (50): 505501. doi:10.1088/1361-648X/ab3f76. PMID 31469104. Bibcode2019JPCM...31X5501L. 
  17. Akahama, Y.; Kobayashi, M.; Kawamura, H. (1993). "Structural studies of pressure-induced phase transitions in selenium up to 150 GPa". Physical Review B 47 (1): 20–26. doi:10.1103/PhysRevB.47.20. PMID 10004412. Bibcode1993PhRvB..47...20A. 
  18. San Miguel, A.; Libotte, H.; Gaspard, J.P.; Gauthier, M.; Itié, J.P.; Polian, A. (2000). "Bromine metallization studied by X-ray absorption spectroscopy". The European Physical Journal B 17 (2): 227–233. doi:10.1007/s100510070136. Bibcode2000EPJB...17..227S. 
  19. Hama, Juichiro; Suito, Kaichi (1989). "Equation of state and metallization in compressed solid krypton". Physics Letters A 140 (3): 117–121. doi:10.1016/0375-9601(89)90503-3. Bibcode1989PhLA..140..117H. 
  20. Marini, C.; Chermisi, D.; Lavagnini, M.; Di Castro, D.; Petrillo, C.; Degiorgi, L.; Scandolo, S.; Postorino, P. (2012). "High-pressure phases of crystalline tellurium: A combined Raman and ab initio study". Physical Review B 86 (6): 064103. doi:10.1103/PhysRevB.86.064103. Bibcode2012PhRvB..86f4103M. 
  21. Pasternak, M.; Farrell, J. N.; Taylor, R. D. (1987). "Metallization and structural transformation of iodine under pressure: A microscopic view". Physical Review Letters 58 (6): 575–578. doi:10.1103/physrevlett.58.575. PMID 10034976. Bibcode1987PhRvL..58..575P. 
  22. Eremets, Mikhail; Gregoryanz, Eugene; Struzhkin, Victor; Mao, Ho-Kwang; Hemley, Russell; Mulders, Norbert; Zimmerman, Neil (2000). "Electrical Conductivity of Xenon at Megabar Pressures". Physical Review Letters 85 (13): 2797–2800. doi:10.1103/PhysRevLett.85.2797. PMID 10991236. Bibcode2000PhRvL..85.2797E.