Physics:Overlapping distribution method

From HandWiki

The Overlapping distribution method was introduced by Charles H. Bennett[1] for estimating chemical potential.

Theory

For two N particle systems 0 and 1 with partition function Q0 and Q1 ,

from F(N,V,T)=kBTlnQ

get the thermodynamic free energy difference is ΔF=kBTln(Q1/Q0)=kBTln(dsNexp[βU1(sN)]dsNexp[βU0(sN)])

For every configuration visited during this sampling of system 1 we can compute the potential energy U as a function of the configuration space, and the potential energy difference is

ΔU=U1(sN)U0(sN)

Now construct a probability density of the potential energy from the above equation:

p1(ΔU)=dsNexp(βU1)δ(U1U0ΔU)Q1

where in p1 is a configurational part of a partition function

p1(ΔU)=dsNexp(βU1)δ(U1U0ΔU)Q1=dsNexp[β(U0+ΔU)]δ(U1U0ΔU)Q1 =Q0Q1exp(βΔU)dsNexp(βU0)δ(U1U0ΔU)Q0=Q0Q1exp(βΔU)p0(ΔU)

since

ΔF=kBTln(Q1/Q0)


lnp1(ΔU)=β(ΔFΔU)+lnp0(ΔU)


now define two functions:

f0(ΔU)=lnp0(ΔU)βΔU2f1(ΔU)=lnp1(ΔU)+βΔU2

thus that

f1(ΔU)=f0(ΔU)+βΔF

andΔF can be obtained by fitting f1 and f0

References

  1. Bennett, C.H. (1976). "Efficient Estimation of Free Energy Differences from Monte Carlo Data". Journal of Computational Physics 22 (22): 245–268. doi:10.1016/0021-9991(76)90078-4. Bibcode1976JCoPh..22..245B.