Physics:Photonic topological insulator

From HandWiki

Photonic topological insulators are artificial electromagnetic materials that support topologically non-trivial, unidirectional states of light.[1] Photonic topological phases are classical electromagnetic wave analogues of electronic topological phases studied in condensed matter physics. Similar to their electronic counterparts, they, can provide robust unidirectional channels for light propagation.[2] The field that studies these phases of light is referred to as topological photonics, even though the working frequency of these electromagnetic topological insulators may fall in other parts of the electromagnetic spectrum such as the microwave range.[3]

History

Topological order in solid state systems has been studied in condensed matter physics since the discovery of integer quantum Hall effect. But topological matter attracted considerable interest from the physics community after the proposals for possible observation of symmetry-protected topological phases (or the so-called topological insulators) in graphene,[4] and experimental observation of a 2D topological insulator in CdTe/HgTe/CdTe quantum wells in 2007.[5][6]

In 2008, Haldane and Raghu proposed that unidirectional electromagnetic states analogous to (integer) quantum Hall states can be realized in nonreciprocal magnetic photonic crystals.[7] This prediction was first realized in 2009 in the microwave frequency regime.[8] This was followed by the proposals for analogous quantum spin Hall states of electromagnetic waves that are now known as photonic topological insulators.[9][3] It was later found that topological electromagnetic states can exist in continuous media as well--theoretical and numerical study has confirmed the existence of topological Langmuir-cyclotron waves in continuous magnetized plasmas.[10][11]

Platforms

Photonic topological insulators are designed using various photonic platforms including optical waveguide arrays,[12] coupled ring resonators,[13] bi-anisotropic meta-materials, and photonic crystals.[14] More recently, they have been realized in 2D dielectric[15] and plasmonic[16] meta-surfaces. Despite the theoretical prediction,[10][11] no experimental demonstration of photonic topological insulator in continuous media has been reported.

Chern number

As an important figure of merit for characterizing the quantized collective behaviors of the wavefunction, Chern number is the topological invariant of quantum Hall insulators. Chern number also identifies the topological properties of the photonic topological insulators (PTIs), thus it is of crucial importance in PTI design. The full-wave finite-difference frequency-domain (FDFD) method based MATLAB program for computing the Chern number has been written.[17] Recently, the finite-difference method has been extended to analyze the topological invariant of non-Hermitian topological dielectric photonic crystals by first-principle Wilson loop calculation. [18]

See also

References

  1. Lu, Ling; Joannopoulos, John D.; Soljačić, Marin (November 2014). "Topological photonics" (in en). Nature Photonics 8 (11): 821–829. doi:10.1038/nphoton.2014.248. ISSN 1749-4893. Bibcode2014NaPho...8..821L. 
  2. Ozawa, Tomoki; Price, Hannah M.; Amo, Alberto; Goldman, Nathan; Hafezi, Mohammad; Lu, Ling; Rechtsman, Mikael C.; Schuster, David et al. (25 March 2019). "Topological photonics". Reviews of Modern Physics 91 (1): 015006. doi:10.1103/RevModPhys.91.015006. Bibcode2019RvMP...91a5006O. 
  3. 3.0 3.1 Khanikaev, Alexander B.; Hossein Mousavi, S.; Tse, Wang-Kong; Kargarian, Mehdi; MacDonald, Allan H.; Shvets, Gennady (March 2013). "Photonic topological insulators" (in en). Nature Materials 12 (3): 233–239. doi:10.1038/nmat3520. ISSN 1476-4660. PMID 23241532. Bibcode2013NatMa..12..233K. 
  4. Kane, C. L.; Mele, E. J. (23 November 2005). "Quantum Spin Hall Effect in Graphene". Physical Review Letters 95 (22): 226801. doi:10.1103/PhysRevLett.95.226801. PMID 16384250. Bibcode2005PhRvL..95v6801K. 
  5. Bernevig, B. Andrei; Hughes, Taylor L.; Zhang, Shou-Cheng (15 December 2006). "Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells" (in en). Science 314 (5806): 1757–1761. doi:10.1126/science.1133734. ISSN 0036-8075. PMID 17170299. Bibcode2006Sci...314.1757B. 
  6. Hasan, M. Z.; Kane, C. L. (8 November 2010). "Colloquium: Topological insulators". Reviews of Modern Physics 82 (4): 3045–3067. doi:10.1103/RevModPhys.82.3045. Bibcode2010RvMP...82.3045H. https://repository.upenn.edu/cgi/viewcontent.cgi?article=1043&context=physics_papers. 
  7. Haldane, F. D. M.; Raghu, S. (10 January 2008). "Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry". Physical Review Letters 100 (1): 013904. doi:10.1103/PhysRevLett.100.013904. PMID 18232766. Bibcode2008PhRvL.100a3904H. 
  8. Wang, Zheng (2009). "Observation of unidirectional backscattering-immune topological electromagnetic states". Nature 461 (7265): 772–775. doi:10.1038/nature08293. PMID 19812669. Bibcode2009Natur.461..772W. 
  9. Hafezi, Mohammad; Demler, Eugene A.; Lukin, Mikhail D.; Taylor, Jacob M. (November 2011). "Robust optical delay lines with topological protection" (in en). Nature Physics 7 (11): 907–912. doi:10.1038/nphys2063. ISSN 1745-2481. Bibcode2011NatPh...7..907H. 
  10. 10.0 10.1 Qin, Hong; Fu, Yichen (2023-03-31). "Topological Langmuir-cyclotron wave" (in en). Science Advances 9 (13): eadd8041. doi:10.1126/sciadv.add8041. ISSN 2375-2548. PMID 37000869. PMC 10065437. https://www.science.org/doi/10.1126/sciadv.add8041. 
  11. 11.0 11.1 Fu, Yichen; Qin, Hong (2021-06-24). "Topological phases and bulk-edge correspondence of magnetized cold plasmas" (in en). Nature Communications 12 (1): 3924. doi:10.1038/s41467-021-24189-3. ISSN 2041-1723. PMC 8225675. https://www.nature.com/articles/s41467-021-24189-3. 
  12. Rechtsman, Mikael (April 10, 2013). "Photonic Floquet Topological Insulators". Nature 496 (7444): 196–200. doi:10.1038/nature12066. PMID 23579677. Bibcode2013Natur.496..196R. 
  13. Hafezi, M.; Mittal, S.; Fan, J.; Migdall, A.; Taylor, J. M. (December 2013). "Imaging topological edge states in silicon photonics" (in en). Nature Photonics 7 (12): 1001–1005. doi:10.1038/nphoton.2013.274. ISSN 1749-4893. Bibcode2013NaPho...7.1001H. 
  14. Wu, Long-Hua; Hu, Xiao (3 June 2015). "Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material". Physical Review Letters 114 (22): 223901. doi:10.1103/PhysRevLett.114.223901. PMID 26196622. Bibcode2015PhRvL.114v3901W. 
  15. Gorlach, Maxim A.; Ni, Xiang; Smirnova, Daria A.; Korobkin, Dmitry; Zhirihin, Dmitry; Slobozhanyuk, Alexey P.; Belov, Pavel A.; Alù, Andrea et al. (2 March 2018). "Far-field probing of leaky topological states in all-dielectric metasurfaces" (in en). Nature Communications 9 (1): 909. doi:10.1038/s41467-018-03330-9. ISSN 2041-1723. PMID 29500466. Bibcode2018NatCo...9..909G. 
  16. Honari-Latifpour, Mostafa; Yousefi, Leila (2019). "Topological plasmonic edge states in a planar array of metallic nanoparticles". Nanophotonics 8 (5): 799–806. doi:10.1515/nanoph-2018-0230. ISSN 2192-8614. Bibcode2019Nanop...8..230H. 
  17. Zhao, Ran; Xie, Guo-Da; Chen, Menglin L. N.; Lan, Zhihao; Huang, Zhixiang; Sha, Wei E. I. (2020-02-17). "First-principle calculation of Chern number in gyrotropic photonic crystals" (in EN). Optics Express 28 (4): 4638–4649. doi:10.1364/OE.380077. ISSN 1094-4087. PMID 32121697. Bibcode2020OExpr..28.4638Z. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-28-4-4638. 
  18. Chen, Menglin L. N.; Jiang, Li Jun; Zhang, Shuang; Zhao, Ran; Lan, Zhihao; Sha, Wei E. I. (2021-09-01). "Comparative study of Hermitian and non-Hermitian topological dielectric photonic crystals" (in EN). Physical Review A 104 (3): 033501. doi:10.1103/PhysRevA.104.033501. Bibcode2021PhRvA.104c3501C. https://doi.org/10.1103/PhysRevA.104.033501.