Physics:Polder tensor

From HandWiki

The Polder tensor is a tensor introduced by Dirk Polder[1] for the description of magnetic permeability of ferrites.[2] The tensor notation needs to be used because ferrimagnetic material becomes anisotropic in the presence of a magnetizing field.

The tensor is described mathematically as:[3]

[math]\displaystyle{ B = \begin{bmatrix} \mu & j \kappa & 0 \\ -j \kappa & \mu & 0 \\ 0 & 0 & \mu_0 \end{bmatrix} H }[/math]

Neglecting the effects of damping, the components of the tensor are given by

[math]\displaystyle{ \mu = \mu_0 \left( 1+ \frac{\omega_0 \omega_m}{\omega_0^2 - \omega^2} \right) }[/math]
[math]\displaystyle{ \kappa = \mu_0 \frac{\omega \omega_m}{{\omega_0}^2 - \omega^2} }[/math]

where

[math]\displaystyle{ \omega_0 = \gamma \mu_0 H_0 \ }[/math]
[math]\displaystyle{ \omega_m = \gamma \mu_0 M \ }[/math]
[math]\displaystyle{ \omega = 2 \pi f }[/math]

[math]\displaystyle{ \gamma = 1.11 \times 10^5 \cdot g \,\, }[/math] (rad / s) / (A / m) is the effective gyromagnetic ratio and [math]\displaystyle{ g }[/math], the so-called effective g-factor (physics), is a ferrite material constant typically in the range of 1.5 - 2.6, depending on the particular ferrite material. [math]\displaystyle{ f }[/math] is the frequency of the RF/microwave signal propagating through the ferrite, [math]\displaystyle{ H_0 }[/math] is the internal magnetic bias field, [math]\displaystyle{ M }[/math] is the magnetization of the ferrite material and [math]\displaystyle{ \mu_0 }[/math] is the magnetic permeability of free space.

To simplify computations, the radian frequencies of [math]\displaystyle{ \omega_0, \, \omega_m, \, }[/math] and [math]\displaystyle{ \omega }[/math] can be replaced with frequencies (Hz) in the equations for [math]\displaystyle{ \mu }[/math] and [math]\displaystyle{ \kappa }[/math] because the [math]\displaystyle{ 2 \pi }[/math] factor cancels. In this case, [math]\displaystyle{ \gamma = 1.76 \times 10^4 \cdot g \,\, }[/math] Hz / (A / m) [math]\displaystyle{ = 1.40 \cdot g \,\, }[/math] MHz / Oe. If CGS units are used, computations can be further simplified because the [math]\displaystyle{ \mu_0 }[/math] factor can be dropped.

References