Physics:Round-trip loss

From HandWiki

In laser physics, the round-trip loss, or background loss [math]\displaystyle{ ~\beta~ }[/math] determines, what part of the energy of the laser field becomes unusable at each round-trip; it can be absorbed or scattered.

At the self-pulsation, the gain lates to respond the variation of number of photons in the cavity. Within the simple model, the round-trip loss and the output coupling determine the damping parameters of the equivalent oscillator Toda [1] [2].

At the steady-state operation, the round-trip gain [math]\displaystyle{ ~g~ }[/math] exactly compensate both, the output coupling and losses: [math]\displaystyle{ ~\exp(g)~(1-\beta-\theta)=1~ }[/math]. Assuming, that the gain is small ([math]\displaystyle{ ~g~\ll 1~ }[/math]), this relation can be written as follows:

[math]\displaystyle{ ~g=\beta+\theta~ }[/math]

Such as relation is used in analytic estimates of the performance of lasers [3]. In particular, the round-trip loss [math]\displaystyle{ ~\beta~ }[/math] may be one of important parameters which limit the output power of a disk laser; at the power scaling, the gain [math]\displaystyle{ ~G~ }[/math] should be decreased (in order to avoid the exponential growth of the amplified spontaneous emission), and the round-trip gain [math]\displaystyle{ ~g~ }[/math] should remain larger than the background loss [math]\displaystyle{ ~\beta~ }[/math]; this requires to increase of the thickness of the slab of the gain medium; at certain thickness, the overheating prevents the efficient operation [4][5].

For the analysis of processes in active medium, the sum [math]\displaystyle{ ~\beta+\theta~ }[/math] can be also called "loss" [6]. This notation leads to confusions as soon as one is interested, which part of the energy is absorbed and scattered, and which part of such a "loss" is actually wanted and useful output of the laser.

References

  1. G.L.Oppo; A.Politi (1985). "Toda potential in laser equations". Zeitschrift fur Physik B 59: 111–115. doi:10.1007/BF01325388. http://worldcat.org/issn/0722-3277. 
  2. D.Kouznetsov; J.-F.Bisson, J.Li, K.Ueda (2007). "Self-pulsing laser as oscillator Toda: Approximation through elementary functions". Journal of Physics A 40: 1–18. doi:10.1088/1751-8113/40/9/016. http://www.iop.org/EJ/abstract/-search=15823442.1/1751-8121/40/9/016. 
  3. D.Kouznetsov; J.-F.Bisson, K.Takaichi, K.Ueda (2005). "Single-mode solid-state laser with short wide unstable cavity". JOSAB 22 (8): 1605–1619. doi:10.1364/JOSAB.22.001605. http://josab.osa.org/abstract.cfm?id=84730. 
  4. D. Kouznetsov; J.-F. Bisson, J. Dong, and K. Ueda (2006). "Surface loss limit of the power scaling of a thin-disk laser". JOSAB 23 (6): 1074–1082. doi:10.1364/JOSAB.23.001074. http://josab.osa.org/abstract.cfm?id=90157. Retrieved 2007-01-26. 
  5. D.Kouznetsov; J.-F.Bisson (2008). "Role of the undoped cap in the scaling of a thin disk laser". JOSA B 25 (3): 338-345. doi:10.1364/JOSAB.25.000338. http://www.opticsinfobase.org/abstract.cfm?URI=josab-25-3-338. 
  6. A.E.Siegman (1986). Lasers. University Science Books. ISBN 0-935702-11-3. http://www.uscibooks.com/siegman.htm.