Physics:Sachdev-Ye-Kitaev model

From HandWiki

In condensed matter physics and black hole physics, the Sachdev-Ye-Kitaev (SYK) model commonly known as SYK model is an exactly solvable model initially proposed by Subir Sachdev and his graduate student Jinwu Ye[1] and later modified by Alexei Kitaev to the present commonly used form[2][3]. The model is believed to bring insights into the understanding of strongly correlated materials and it also has a close relation with the discrete model of AdS/CFT, and Fermionic code. The model is amenable to digital quantum simulation[4], with pioneering experiments implemented in a NMR setting[5].

SYK model

Let [math]\displaystyle{ n }[/math] be an integer and [math]\displaystyle{ m }[/math] and even integer such that [math]\displaystyle{ 2\leq m\leq n }[/math], consider a set of Majorana Fermions [math]\displaystyle{ \psi_{i_1},\cdots,\psi_{i_n} }[/math]which are Fermion operators satisfy conditions: (1) Hermitian [math]\displaystyle{ \psi_i^{\dagger}=\psi_i }[/math]; (2) Clifford relation [math]\displaystyle{ \{\psi_i,\psi_j\}=2\delta_{ij} }[/math]. Choosing a random variable [math]\displaystyle{ J_{i_1i_2\cdots i_m} }[/math] such that the expectation satisfy: (1) [math]\displaystyle{ \mathbf{E}(J_{i_1i_2\cdots i_m})=0 }[/math]; and (2) [math]\displaystyle{ \mathbf{E}(J_{i_1i_2\cdots i_m}^2)=1 }[/math], Then the SYK model is defined as

[math]\displaystyle{ H_{SYK}=i^{m/2}\sum_{1\leq i_1\lt \cdots\lt i_m\leq n}J_{i_1i_2\cdots i_m}\psi_{i_1}\psi_{i_2}\cdots\psi_{i_n} }[/math].

Note that sometimes, an extra normalization factor will be added.

The more famous model is when [math]\displaystyle{ m=4 }[/math], then the model becomes

[math]\displaystyle{ H_{SYK}=-\frac{1}{4!}\sum_{i_1 \ldots i_4\in \{1,N\} }J_{i_1i_2i_3 i_4}\psi_{i_1}\psi_{i_2}\psi_{i_3}\psi_{i_4} }[/math],

notice that here the factor [math]\displaystyle{ 1/4! }[/math] is added for coincidence with the usually used form.

References

  1. Sachdev, Subir; Ye, Jinwu (1993-05-24). "Gapless spin-fluid ground state in a random quantum Heisenberg magnet". Physical Review Letters 70 (21): 3339–3342. doi:10.1103/PhysRevLett.70.3339. PMID 10053843. Bibcode1993PhRvL..70.3339S. 
  2. "Alexei Kitaev, Caltech & KITP, A simple model of quantum holography (part 1)". http://online.kitp.ucsb.edu/online/entangled15/kitaev/. 
  3. "Alexei Kitaev, Caltech, A simple model of quantum holography (part 2)". http://online.kitp.ucsb.edu/online/entangled15/kitaev2/. 
  4. García-Álvarez, L.; Egusquiza, I.L.; Lamata, L.; del Campo, A.; Sonner, J.; Solano, E. (2017). "Digital Quantum Simulation of Minimal AdS/CFT". Physical Review Letters 119: 040501. doi:10.1103/PhysRevLett.119.040501. Bibcode2017PhRvL.119d0501G. 
  5. Luo, Z.; You, Y.-Z.; Li, J.; Jian, C.-M.; Lu, D.; Xu, C.; Zeng, B.; Laflamme, R. (2019). "Quantum simulation of the non-fermi-liquid state of Sachdev-Ye-Kitaev model". npj Quantum Information 5: 53. doi:10.1038/s41534-019-0166-7. Bibcode2019npjQI...5...53L.