Pidduck polynomials
From HandWiki
In mathematics, the Pidduck polynomials sn(x) are polynomials introduced by Pidduck (1910, 1912) given by the generating function
- [math]\displaystyle{ \displaystyle \sum_n \frac{s_n(x)}{n!}t^n = \left(\frac{1+t}{1-t}\right)^x(1-t)^{-1} }[/math]
(Roman 1984), (Boas Buck)
See also
References
- Boas, Ralph P.; Buck, R. Creighton (1958), Polynomial expansions of analytic functions, Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge., 19, Berlin, New York: Springer-Verlag, https://books.google.com/books?id=eihMuwkh4DsC
- Pidduck, F. B. (1910), "On the Propagation of a Disturbance in a Fluid under Gravity", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character (The Royal Society) 83 (563): 347–356, doi:10.1098/rspa.1910.0023, ISSN 0950-1207, https://zenodo.org/record/1432013/files/article.pdf
- Pidduck, F. B. (1912), "The Wave-Problem of Cauchy and Poisson for Finite Depth and Slightly Compressible Fluid", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character (The Royal Society) 86 (588): 396–405, doi:10.1098/rspa.1912.0031, ISSN 0950-1207
- Roman, Steven (1984), The umbral calculus, Pure and Applied Mathematics, 111, London: Academic Press Inc. [Harcourt Brace Jovanovich Publishers], ISBN 978-0-12-594380-2, https://books.google.com/books?id=JpHjkhFLfpgC Reprinted by Dover Publications, 2005
Original source: https://en.wikipedia.org/wiki/Pidduck polynomials.
Read more |