Pinched torus

From HandWiki
Short description: Kind of two-dimensional surface
A Pinched Torus

In mathematics, and especially topology and differential geometry, a pinched torus (or croissant surface) is a kind of two-dimensional surface. It gets its name from its resemblance to a torus that has been pinched at a single point. A pinched torus is an example of an orientable, compact 2-dimensional pseudomanifold.[1]

Parametrisation

A pinched torus is easily parametrisable. Let us write g(x,y) = 2 + sin(x/2).cos(y). An example of such a parametrisation − which was used to plot the picture − is given by ƒ : [0,2π)2R3 where:

f(x,y)=(g(x,y)cosx,g(x,y)sinx,sin(x2)siny)

Topology

Topologically, the pinched torus is homotopy equivalent to the wedge of a sphere and a circle.[2][3] It is homeomorphic to a sphere with two distinct points being identified.[2][3]

Homology

Let P denote the pinched torus. The homology groups of P over the integers can be calculated. They are given by:

H0(P,), H1(P,), and H2(P,).

Cohomology

The cohomology groups of P over the integers can be calculated. They are given by:

H0(P,), H1(P,), and H2(P,).

References

  1. Brasselet, J. P. (1996). "Intersection of Algebraic Cycles". Journal of Mathematical Sciences (Springer New York) 82 (5): 3625–3632. doi:10.1007/bf02362566. 
  2. 2.0 2.1 Hatcher, Allen (2001), Algebraic Topology, Cambridge University Press, ISBN 0-521-79540-0 
  3. 3.0 3.1 Allen Hatcher. "Chapter 0: Algebraic Topology". http://www.math.cornell.edu/~hatcher/AT/ATch0.pdf. Retrieved August 6, 2010.