Projection formula
From HandWiki
In algebraic geometry, the projection formula states the following:[1][2] For a morphism [math]\displaystyle{ f:X\to Y }[/math] of ringed spaces, an [math]\displaystyle{ \mathcal{O}_X }[/math]-module [math]\displaystyle{ \mathcal{F} }[/math] and a locally free [math]\displaystyle{ \mathcal{O}_Y }[/math]-module [math]\displaystyle{ \mathcal{E} }[/math] of finite rank, the natural maps of sheaves
- [math]\displaystyle{ R^i f_* \mathcal{F} \otimes \mathcal{E} \to R^i f_* (\mathcal{F} \otimes f^* \mathcal{E}) }[/math]
are isomorphisms.
There is yet another projection formula in the setting of étale cohomology.
See also
References
- ↑ Hartshorne 1977, Ch III, Exercise 8.3
- ↑ http://math.stanford.edu/~vakil/0708-216/216class38.pdf[bare URL PDF]
Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9
Original source: https://en.wikipedia.org/wiki/Projection formula.
Read more |