q-Bessel polynomials
From HandWiki
In mathematics, the q-Bessel polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
Definition
The polynomials are given in terms of basic hypergeometric functions by [1]:
- [math]\displaystyle{ y_{n}(x;a;q)=\;{}_2\phi_1 \left(\begin{matrix} q^{-n} & -aq^{n} \\ 0 \end{matrix} ; q,qx \right). }[/math]
Also known as alternative q-Charlier polynomials [math]\displaystyle{ K(x;a;q). }[/math]
Orthogonality
- [math]\displaystyle{ \sum_{k=0}^{\infty}\left(\frac{a^k}{(q;q)_n}*q^{k+1 \choose 2}*y_{m}*(q^k;a;q)*y_{n}*(q^k;a;q)\right)=(q;q)_{n}*(-aq^n;q)_{\infty}\frac{ a^{n}*q^{n+1 \choose 2} }{1+aq^{2n}}\delta_{mn} }[/math][2]
where [math]\displaystyle{ (q;q)_n\text{ and }(-aq^n;q)_\infty }[/math] are q-Pochhammer symbols.
Gallery
References
- Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96 (2nd ed.), Cambridge University Press, ISBN 978-0-521-83357-8
- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Orthogonal Polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F. et al., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, http://dlmf.nist.gov/18
Original source: https://en.wikipedia.org/wiki/Q-Bessel polynomials.
Read more |