q-Laguerre polynomials
From HandWiki
In mathematics, the q-Laguerre polynomials, or generalized Stieltjes–Wigert polynomials P(α)n(x;q) are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme introduced by Daniel S. Moak (1981). Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
Definition
The q-Laguerre polynomials are given in terms of basic hypergeometric functions and the q-Pochhammer symbol by
- [math]\displaystyle{ \displaystyle L_n^{(\alpha)}(x;q) = \frac{(q^{\alpha+1};q)_n}{(q;q)_n} {}_1\phi_1(q^{-n};q^{\alpha+1};q,-q^{n+\alpha+1}x). }[/math]
Orthogonality
Orthogonality is defined by the unimono nature of the polynomials' convergence at boundaries in integral form.
References
- Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96 (2nd ed.), Cambridge University Press, ISBN 978-0-521-83357-8
- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Chapter 18: Orthogonal Polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F. et al., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, http://dlmf.nist.gov/18
- Moak, Daniel S. (1981), "The q-analogue of the Laguerre polynomials", J. Math. Anal. Appl. 81 (1): 20–47, doi:10.1016/0022-247X(81)90048-2
Original source: https://en.wikipedia.org/wiki/Q-Laguerre polynomials.
Read more |