Quantum q-Krawtchouk polynomials

From HandWiki

In mathematics, the quantum q-Krawtchouk polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

Definition

The polynomials are given in terms of basic hypergeometric functions by

[math]\displaystyle{ K_n^{qtm}(q^{-x};p,N;q)={}_2\phi_1\left[\begin{matrix} q^{-n},q^{-x}\\ q^{-N}\end{matrix} ;q;pq^{n+1}\right]\qquad n=0,1,2,...,N. }[/math]

References