Quarter period
In mathematics, the quarter periods K(m) and iK ′(m) are special functions that appear in the theory of elliptic functions.
The quarter periods K and iK ′ are given by
- [math]\displaystyle{ K(m)=\int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt {1-m \sin^2 \theta}} }[/math]
and
- [math]\displaystyle{ {\rm{i}}K'(m) = {\rm{i}}K(1-m).\, }[/math]
When m is a real number, 0 < m < 1, then both K and K ′ are real numbers. By convention, K is called the real quarter period and iK ′ is called the imaginary quarter period. Any one of the numbers m, K, K ′, or K ′/K uniquely determines the others.
These functions appear in the theory of Jacobian elliptic functions; they are called quarter periods because the elliptic functions [math]\displaystyle{ \operatorname{sn}u }[/math] and [math]\displaystyle{ \operatorname{cn}u }[/math] are periodic functions with periods [math]\displaystyle{ 4K }[/math] and [math]\displaystyle{ 4{\rm{i}}K'. }[/math] However, the [math]\displaystyle{ \operatorname{sn} }[/math] function is also periodic with a smaller period (in terms of the absolute value) than [math]\displaystyle{ 4\mathrm iK' }[/math], namely [math]\displaystyle{ 2\mathrm iK' }[/math].
Notation
The quarter periods are essentially the elliptic integral of the first kind, by making the substitution [math]\displaystyle{ k^2=m }[/math]. In this case, one writes [math]\displaystyle{ K(k)\, }[/math] instead of [math]\displaystyle{ K(m) }[/math], understanding the difference between the two depends notationally on whether [math]\displaystyle{ k }[/math] or [math]\displaystyle{ m }[/math] is used. This notational difference has spawned a terminology to go with it:
- [math]\displaystyle{ m }[/math] is called the parameter
- [math]\displaystyle{ m_1= 1-m }[/math] is called the complementary parameter
- [math]\displaystyle{ k }[/math] is called the elliptic modulus
- [math]\displaystyle{ k' }[/math] is called the complementary elliptic modulus, where [math]\displaystyle{ {k'}^2=m_1 }[/math]
- [math]\displaystyle{ \alpha }[/math] the modular angle, where [math]\displaystyle{ k=\sin \alpha, }[/math]
- [math]\displaystyle{ \frac{\pi}{2}-\alpha }[/math] the complementary modular angle. Note that
- [math]\displaystyle{ m_1=\sin^2\left(\frac{\pi}{2}-\alpha\right)=\cos^2 \alpha. }[/math]
The elliptic modulus can be expressed in terms of the quarter periods as
- [math]\displaystyle{ k=\operatorname{ns} (K+{\rm{i}}K') }[/math]
and
- [math]\displaystyle{ k'= \operatorname{dn} K }[/math]
where [math]\displaystyle{ \operatorname{ns} }[/math] and [math]\displaystyle{ \operatorname{dn} }[/math] are Jacobian elliptic functions.
The nome [math]\displaystyle{ q\, }[/math] is given by
- [math]\displaystyle{ q=e^{-\frac{\pi K'}{K}}. }[/math]
The complementary nome is given by
- [math]\displaystyle{ q_1=e^{-\frac{\pi K}{K'}}. }[/math]
The real quarter period can be expressed as a Lambert series involving the nome:
- [math]\displaystyle{ K=\frac{\pi}{2} + 2\pi\sum_{n=1}^\infty \frac{q^n}{1+q^{2n}}. }[/math]
Additional expansions and relations can be found on the page for elliptic integrals.
References
- Milton Abramowitz and Irene A. Stegun (1964), Handbook of Mathematical Functions, Dover Publications, New York. ISBN:0-486-61272-4. See chapters 16 and 17.
Original source: https://en.wikipedia.org/wiki/Quarter period.
Read more |