Quasi-bialgebra
In mathematics, quasi-bialgebras are a generalization of bialgebras: they were first defined by the Ukraine mathematician Vladimir Drinfeld in 1990. A quasi-bialgebra differs from a bialgebra by having coassociativity replaced by an invertible element [math]\displaystyle{ \Phi }[/math] which controls the non-coassociativity. One of their key properties is that the corresponding category of modules forms a tensor category.
Definition
A quasi-bialgebra [math]\displaystyle{ \mathcal{B_A} = (\mathcal{A}, \Delta, \varepsilon, \Phi,l,r) }[/math] is an algebra [math]\displaystyle{ \mathcal{A} }[/math] over a field [math]\displaystyle{ \mathbb{F} }[/math] equipped with morphisms of algebras
- [math]\displaystyle{ \Delta : \mathcal{A} \rightarrow \mathcal{A \otimes A} }[/math]
- [math]\displaystyle{ \varepsilon : \mathcal{A} \rightarrow \mathbb{F} }[/math]
along with invertible elements [math]\displaystyle{ \Phi \in \mathcal{A \otimes A \otimes A} }[/math], and [math]\displaystyle{ r,l \in A }[/math] such that the following identities hold:
- [math]\displaystyle{ (id \otimes \Delta) \circ \Delta(a) = \Phi \lbrack (\Delta \otimes id) \circ \Delta (a) \rbrack \Phi^{-1}, \quad \forall a \in \mathcal{A} }[/math]
- [math]\displaystyle{ \lbrack (id \otimes id \otimes \Delta)(\Phi) \rbrack \ \lbrack (\Delta \otimes id \otimes id)(\Phi) \rbrack = (1 \otimes \Phi) \ \lbrack (id \otimes \Delta \otimes id)(\Phi) \rbrack \ (\Phi \otimes 1) }[/math]
- [math]\displaystyle{ (\varepsilon \otimes id)(\Delta a) = l^{-1} a l, \qquad (id \otimes \varepsilon) \circ \Delta = r^{-1} a r, \quad \forall a \in \mathcal{A} }[/math]
- [math]\displaystyle{ (id \otimes \varepsilon \otimes id)(\Phi) = r \otimes l^{-1}. }[/math]
Where [math]\displaystyle{ \Delta }[/math] and [math]\displaystyle{ \epsilon }[/math] are called the comultiplication and counit, [math]\displaystyle{ r }[/math] and [math]\displaystyle{ l }[/math] are called the right and left unit constraints (resp.), and [math]\displaystyle{ \Phi }[/math] is sometimes called the Drinfeld associator.[1]:369-376 This definition is constructed so that the category [math]\displaystyle{ \mathcal{A}-Mod }[/math] is a tensor category under the usual vector space tensor product, and in fact this can be taken as the definition instead of the list of above identities.[1]:368 Since many of the quasi-bialgebras that appear "in nature" have trivial unit constraints, ie. [math]\displaystyle{ l=r=1 }[/math] the definition may sometimes be given with this assumed.[1]:370 Note that a bialgebra is just a quasi-bialgebra with trivial unit and associativity constraints: [math]\displaystyle{ l=r=1 }[/math] and [math]\displaystyle{ \Phi=1 \otimes 1 \otimes 1 }[/math].
Braided quasi-bialgebras
A braided quasi-bialgebra (also called a quasi-triangular quasi-bialgebra) is a quasi-bialgebra whose corresponding tensor category [math]\displaystyle{ \mathcal{A}-Mod }[/math] is braided. Equivalently, by analogy with braided bialgebras, we can construct a notion of a universal R-matrix which controls the non-cocommutativity of a quasi-bialgebra. The definition is the same as in the braided bialgebra case except for additional complications in the formulas caused by adding in the associator.
Proposition: A quasi-bialgebra [math]\displaystyle{ (\mathcal{A},\Delta,\epsilon,\Phi,l,r) }[/math] is braided if it has a universal R-matrix, ie an invertible element [math]\displaystyle{ R \in \mathcal{A \otimes A} }[/math] such that the following 3 identities hold:
- [math]\displaystyle{ (\Delta^{op})(a)=R \Delta(a) R^{-1} }[/math]
- [math]\displaystyle{ (id \otimes \Delta)(R)=(\Phi_{231})^{-1} R_{13} \Phi_{213} R_{12} (\Phi_{213})^{-1} }[/math]
- [math]\displaystyle{ (\Delta \otimes id)(R)=(\Phi_{321}) R_{13} (\Phi_{213})^{-1} R_{23} \Phi_{123} }[/math]
Where, for every [math]\displaystyle{ a_1 \otimes ... \otimes a_k \in \mathcal{A}^{\otimes k} }[/math], [math]\displaystyle{ a_{i_1 i_2 ... i_n} }[/math] is the monomial with [math]\displaystyle{ a_j }[/math] in the [math]\displaystyle{ i_j }[/math]th spot, where any omitted numbers correspond to the identity in that spot. Finally we extend this by linearity to all of [math]\displaystyle{ \mathcal{A}^{\otimes k} }[/math].[1]:371
Again, similar to the braided bialgebra case, this universal R-matrix satisfies (a non-associative version of) the Yang–Baxter equation:
- [math]\displaystyle{ R_{12}\Phi_{321}R_{13}(\Phi_{132})^{-1}R_{23}\Phi_{123}=\Phi_{321}R_{23}(\Phi_{231})^{-1}R_{13}\Phi_{213}R_{12} }[/math][1]:372
Twisting
Given a quasi-bialgebra, further quasi-bialgebras can be generated by twisting (from now on we will assume [math]\displaystyle{ r=l=1 }[/math]) .
If [math]\displaystyle{ \mathcal{B_A} }[/math] is a quasi-bialgebra and [math]\displaystyle{ F \in \mathcal{A \otimes A} }[/math] is an invertible element such that [math]\displaystyle{ (\varepsilon \otimes id) F = (id \otimes \varepsilon) F = 1 }[/math], set
- [math]\displaystyle{ \Delta ' (a) = F \Delta (a) F^{-1}, \quad \forall a \in \mathcal{A} }[/math]
- [math]\displaystyle{ \Phi ' = (1 \otimes F) \ ((id \otimes \Delta) F) \ \Phi \ ((\Delta \otimes id)F^{-1}) \ (F^{-1} \otimes 1). }[/math]
Then, the set [math]\displaystyle{ (\mathcal{A}, \Delta ' , \varepsilon, \Phi ') }[/math] is also a quasi-bialgebra obtained by twisting [math]\displaystyle{ \mathcal{B_A} }[/math] by F, which is called a twist or gauge transformation.[1]:373 If [math]\displaystyle{ (\mathcal{A},\Delta,\varepsilon, \Phi) }[/math] was a braided quasi-bialgebra with universal R-matrix [math]\displaystyle{ R }[/math] , then so is [math]\displaystyle{ (\mathcal{A},\Delta',\varepsilon, \Phi ') }[/math] with universal R-matrix [math]\displaystyle{ F_{21}RF^{-1} }[/math] (using the notation from the above section).[1]:376 However, the twist of a bialgebra is only in general a quasi-bialgebra. Twistings fulfill many expected properties. For example, twisting by [math]\displaystyle{ F_1 }[/math] and then [math]\displaystyle{ F_2 }[/math] is equivalent to twisting by [math]\displaystyle{ F_2F_1 }[/math], and twisting by [math]\displaystyle{ F }[/math] then [math]\displaystyle{ F^{-1} }[/math] recovers the original quasi-bialgebra.
Twistings have the important property that they induce categorical equivalences on the tensor category of modules:
Theorem: Let [math]\displaystyle{ \mathcal{B_A} }[/math], [math]\displaystyle{ \mathcal{B_{A'}} }[/math] be quasi-bialgebras, let [math]\displaystyle{ \mathcal{B'_{A'}} }[/math] be the twisting of [math]\displaystyle{ \mathcal{B_{A'}} }[/math] by [math]\displaystyle{ F }[/math], and let there exist an isomorphism: [math]\displaystyle{ \alpha:\mathcal{B_A} \to \mathcal{B'_{A'}} }[/math]. Then the induced tensor functor [math]\displaystyle{ (\alpha^*,id,\phi_2^F) }[/math] is a tensor category equivalence between [math]\displaystyle{ \mathcal{A'}-mod }[/math] and [math]\displaystyle{ \mathcal{A}-mod }[/math]. Where [math]\displaystyle{ \phi_2^F(v \otimes w)=F^{-1}(v \otimes w) }[/math]. Moreover, if [math]\displaystyle{ \alpha }[/math] is an isomorphism of braided quasi-bialgebras, then the above induced functor is a braided tensor category equivalence.[1]:375-376
Usage
Quasi-bialgebras form the basis of the study of quasi-Hopf algebras and further to the study of Drinfeld twists and the representations in terms of F-matrices associated with finite-dimensional irreducible representations of quantum affine algebra. F-matrices can be used to factorize the corresponding R-matrix. This leads to applications in statistical mechanics, as quantum affine algebras, and their representations give rise to solutions of the Yang–Baxter equation, a solvability condition for various statistical models, allowing characteristics of the model to be deduced from its corresponding quantum affine algebra. The study of F-matrices has been applied to models such as the XXZ in the framework of the Algebraic Bethe ansatz.
See also
- Bialgebra
- Hopf algebra
- Quasi-Hopf algebra
References
Further reading
- Vladimir Drinfeld, Quasi-Hopf algebras, Leningrad Math J. 1 (1989), 1419-1457
- J.M. Maillet and J. Sanchez de Santos, Drinfeld Twists and Algebraic Bethe Ansatz, Amer. Math. Soc. Transl. (2) Vol. 201, 2000
Original source: https://en.wikipedia.org/wiki/Quasi-bialgebra.
Read more |