Ramsey class
In the area of mathematics known as Ramsey theory, a Ramsey class[1] is one which satisfies a generalization of Ramsey's theorem.
Suppose [math]\displaystyle{ A }[/math], [math]\displaystyle{ B }[/math] and [math]\displaystyle{ C }[/math] are structures and [math]\displaystyle{ k }[/math] is a positive integer. We denote by [math]\displaystyle{ \binom{B}{A} }[/math] the set of all subobjects [math]\displaystyle{ A' }[/math] of [math]\displaystyle{ B }[/math] which are isomorphic to [math]\displaystyle{ A }[/math]. We further denote by [math]\displaystyle{ C \rightarrow (B)^A_k }[/math] the property that for all partitions [math]\displaystyle{ X_1 \cup X_2\cup \dots\cup X_k }[/math] of [math]\displaystyle{ \binom{C}{A} }[/math] there exists a [math]\displaystyle{ B' \in \binom{C}{B} }[/math] and an [math]\displaystyle{ 1 \leq i \leq k }[/math] such that [math]\displaystyle{ \binom{B'}{A} \subseteq X_i }[/math].
Suppose [math]\displaystyle{ K }[/math] is a class of structures closed under isomorphism and substructures. We say the class [math]\displaystyle{ K }[/math] has the A-Ramsey property if for ever positive integer [math]\displaystyle{ k }[/math] and for every [math]\displaystyle{ B\in K }[/math] there is a [math]\displaystyle{ C \in K }[/math] such that [math]\displaystyle{ C \rightarrow (B)^A_k }[/math] holds. If [math]\displaystyle{ K }[/math] has the [math]\displaystyle{ A }[/math]-Ramsey property for all [math]\displaystyle{ A \in K }[/math] then we say [math]\displaystyle{ K }[/math] is a Ramsey class.
Ramsey's theorem is equivalent to the statement that the class of all finite sets is a Ramsey class.
References
- ↑ Nešetřil, Jaroslav (2016-06-14). "All the Ramsey Classes - צילום הרצאות סטודיו האנה בי - YouTube". Tel Aviv University. https://youtube.com/watch?v=_pfa5bogr8g. Retrieved 4 November 2020.
- ↑ Bodirsky, Manuel (27 May 2015). "Ramsey Classes: Examples and Constructions". arXiv:1502.05146 [math.CO].
- ↑ Hubička, Jan; Nešetřil, Jaroslav (November 2019). "All those Ramsey classes (Ramsey classes with closures and forbidden homomorphisms)". Advances in Mathematics 356: 106791. doi:10.1016/j.aim.2019.106791.
Original source: https://en.wikipedia.org/wiki/Ramsey class.
Read more |