Rastrigin function
In mathematical optimization, the Rastrigin function is a non-convex function used as a performance test problem for optimization algorithms. It is a typical example of non-linear multimodal function. It was first proposed in 1974 by Rastrigin[1] as a 2-dimensional function and has been generalized by Rudolph.[2] The generalized version was popularized by Hoffmeister & Bäck[3] and Mühlenbein et al.[4] Finding the minimum of this function is a fairly difficult problem due to its large search space and its large number of local minima.
On an [math]\displaystyle{ n }[/math]-dimensional domain it is defined by:
- [math]\displaystyle{ f(\mathbf{x}) = A n + \sum_{i=1}^n \left[x_i^2 - A\cos(2 \pi x_i)\right] }[/math]
where [math]\displaystyle{ A=10 }[/math] and [math]\displaystyle{ x_i\in[-5.12,5.12] }[/math]. There are many extrema:
- The global minimum is at [math]\displaystyle{ \mathbf{x} = \mathbf{0} }[/math] where [math]\displaystyle{ f(\mathbf{x})=0 }[/math].
- The maximum function value for [math]\displaystyle{ x_i\in[-5.12,5.12] }[/math] is located around [math]\displaystyle{ x_i\in[\pm4.52299366..., ..., \pm4.52299366...] }[/math]:
Number of dimensions | Maximum value at [math]\displaystyle{ \pm4.52299366 }[/math] |
---|---|
1 | 40.35329019 |
2 | 80.70658039 |
3 | 121.0598706 |
4 | 161.4131608 |
5 | 201.7664509 |
6 | 242.1197412 |
7 | 282.4730314 |
8 | 322.8263216 |
9 | 363.1796117 |
Here are all the values at 0.5 interval listed for the 2D Rastrigin function with [math]\displaystyle{ x_i\in[-5.12,5.12] }[/math]:
[math]\displaystyle{ f(x) }[/math] | [math]\displaystyle{ x1 }[/math] | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[math]\displaystyle{ 0 }[/math] | [math]\displaystyle{ \pm0.5 }[/math] | [math]\displaystyle{ \pm1 }[/math] | [math]\displaystyle{ \pm1.5 }[/math] | [math]\displaystyle{ \pm2 }[/math] | [math]\displaystyle{ \pm2.5 }[/math] | [math]\displaystyle{ \pm3 }[/math] | [math]\displaystyle{ \pm3.5 }[/math] | [math]\displaystyle{ \pm4 }[/math] | [math]\displaystyle{ \pm4.5 }[/math] | [math]\displaystyle{ \pm5 }[/math] | [math]\displaystyle{ \pm5.12 }[/math] | ||
[math]\displaystyle{ x2 }[/math] | [math]\displaystyle{ 0 }[/math] | 0 | 20.25 | 1 | 22.25 | 4 | 26.25 | 9 | 32.25 | 16 | 40.25 | 25 | 28.92 |
[math]\displaystyle{ \pm0.5 }[/math] | 20.25 | 40.5 | 21.25 | 42.5 | 24.25 | 46.5 | 29.25 | 52.5 | 36.25 | 60.5 | 45.25 | 49.17 | |
[math]\displaystyle{ \pm1 }[/math] | 1 | 21.25 | 2 | 23.25 | 5 | 27.25 | 10 | 33.25 | 17 | 41.25 | 26 | 29.92 | |
[math]\displaystyle{ \pm1.5 }[/math] | 22.25 | 42.5 | 23.25 | 44.5 | 26.25 | 48.5 | 31.25 | 54.5 | 38.25 | 62.5 | 47.25 | 51.17 | |
[math]\displaystyle{ \pm2 }[/math] | 4 | 24.25 | 5 | 26.25 | 8 | 30.25 | 13 | 36.25 | 20 | 44.25 | 29 | 32.92 | |
[math]\displaystyle{ \pm2.5 }[/math] | 26.25 | 46.5 | 27.25 | 48.5 | 30.25 | 52.5 | 35.25 | 58.5 | 42.25 | 66.5 | 51.25 | 55.17 | |
[math]\displaystyle{ \pm3 }[/math] | 9 | 29.25 | 10 | 31.25 | 13 | 35.25 | 18 | 41.25 | 25 | 49.25 | 34 | 37.92 | |
[math]\displaystyle{ \pm3.5 }[/math] | 32.25 | 52.5 | 33.25 | 54.5 | 36.25 | 58.5 | 41.25 | 64.5 | 48.25 | 72.5 | 57.25 | 61.17 | |
[math]\displaystyle{ \pm4 }[/math] | 16 | 36.25 | 17 | 38.25 | 20 | 42.25 | 25 | 48.25 | 32 | 56.25 | 41 | 44.92 | |
[math]\displaystyle{ \pm4.5 }[/math] | 40.25 | 60.5 | 41.25 | 62.5 | 44.25 | 66.5 | 49.25 | 72.5 | 56.25 | 80.5 | 65.25 | 69.17 | |
[math]\displaystyle{ \pm5 }[/math] | 25 | 45.25 | 26 | 47.25 | 29 | 51.25 | 34 | 57.25 | 41 | 65.25 | 50 | 53.92 | |
[math]\displaystyle{ \pm5.12 }[/math] | 28.92 | 49.17 | 29.92 | 51.17 | 32.92 | 55.17 | 37.92 | 61.17 | 44.92 | 69.17 | 53.92 | 57.85 |
The abundance of local minima underlines the necessity of a global optimization algorithm when needing to find the global minimum. Local optimization algorithms are likely to get stuck in a local minimum.
See also
Notes
- ↑ Rastrigin, L. A. "Systems of extremal control." Mir, Moscow (1974).
- ↑ G. Rudolph. "Globale Optimierung mit parallelen Evolutionsstrategien". Diplomarbeit. Department of Computer Science, University of Dortmund, July 1990.
- ↑ F. Hoffmeister and T. Bäck. "Genetic Algorithms and Evolution Strategies: Similarities and Differences", pages 455–469 in: H.-P. Schwefel and R. Männer (eds.): Parallel Problem Solving from Nature, PPSN I, Proceedings, Springer, 1991.
- ↑ H. Mühlenbein, D. Schomisch and J. Born. "The Parallel Genetic Algorithm as Function Optimizer ". Parallel Computing, 17, pages 619–632, 1991.
Original source: https://en.wikipedia.org/wiki/Rastrigin function.
Read more |