Rayleigh dissipation function
In physics, the Rayleigh dissipation function, named after Lord Rayleigh, is a function used to handle the effects of velocity-proportional frictional forces in Lagrangian mechanics. It was first introduced by him in 1873.[1] If the frictional force on a particle with velocity [math]\displaystyle{ \vec{v} }[/math] can be written as [math]\displaystyle{ \vec{F}_f = -\vec{k}\cdot\vec{v} }[/math], the Rayleigh dissipation function can be defined for a system of [math]\displaystyle{ N }[/math] particles as
- [math]\displaystyle{ R(v) = \frac{1}{2} \sum_{i=1}^N ( k_x v_{i,x}^2 + k_y v_{i,y}^2 + k_z v_{i,z}^2 ). }[/math]
This function represents half of the rate of energy dissipation of the system through friction. The force of friction is negative the velocity gradient of the dissipation function, [math]\displaystyle{ \vec{F}_f = -\nabla_v R(v) }[/math], analogous to a force being equal to the negative position gradient of a potential. This relationship is represented in terms of the set of generalized coordinates [math]\displaystyle{ q_{i}=\left\{q_{1},q_{2},\ldots q_{n}\right\} }[/math] as
- [math]\displaystyle{ \vec{F}_f = -\frac{\partial R}{\partial\dot{q}_{i}} }[/math].
As friction is not conservative, it is included in the [math]\displaystyle{ Q_{i} }[/math] term of Lagrange's equations,
- [math]\displaystyle{ \frac{d}{dt}\frac{\partial L}{\partial \dot{q_{i}}}-\frac{\partial L}{\partial q_{i}}=Q_{i} }[/math].
Applying of the value of the frictional force described by generalized coordinates into the Euler-Lagrange equations gives (see [2])
- [math]\displaystyle{ \frac{d}{dt}\big(\frac{\partial L}{\partial \dot{q_{i}}}\big)-\frac{\partial L}{\partial q_{i}}=-\frac{\partial R}{\partial\dot{q}_{i}} }[/math].
Rayleigh writes the Lagrangian [math]\displaystyle{ L }[/math] as kinetic energy [math]\displaystyle{ T }[/math] minus potential energy [math]\displaystyle{ V }[/math], which yields Rayleigh's Eqn. (26) from 1873.
- [math]\displaystyle{ \frac{d}{dt}\big(\frac{\partial T}{\partial \dot{q_{i}}}\big) + \frac{\partial R}{\partial\dot{q}_{i}} +\frac{\partial V}{\partial q_{i}}=0 }[/math].
Since the 1970s the name Rayleigh dissipation potential for [math]\displaystyle{ R }[/math] is more common. Moreover, the original theory is generalized from quadratic functions [math]\displaystyle{ q \mapsto R(\dot \dot q)=\frac12 \dot q \cdot \mathbb V \dot q }[/math] to dissipation potentials that are depending on [math]\displaystyle{ q }[/math] (then called state dependence) and are non-quadratic, which leads to nonlinear friction laws like in Coulomb friction or in plasticity. The main assumption is then, that the mapping [math]\displaystyle{ \dot q \mapsto R(q,\dot q) }[/math] is convex and satisfies [math]\displaystyle{ 0 = R(q,0)\leq R(q, \dot q) }[/math], see e.g. [3] [4] [5]
References
- ↑ Rayleigh, Lord (1873). "Some general theorems relating to vibrations.". Proc. London Math. Soc. s1-4: 357–368. doi:10.1112/plms/s1-4.1.357.
- ↑ Goldstein, Herbert (1980). Classical Mechanics (2nd ed.). Reading, MA: Addison-Wesley. p. 24. ISBN 0-201-02918-9.
- ↑ Moreau, Jean Jacques (1971). "Fonctions de résistance et fonctions de dissipation". Travaux du Séminaire d'Analyse Convexe, Montpellier (Exposé no. 6): (See page 6.3 for "fonction de resistance"). https://hal.science/hal-02309448.
- ↑ Lebon, Georgy; Jou, David; Casas-Vàzquez, Jos\'e (2008). Understanding Non-equilibrium Thermodynamics. Springer-Verlag. p. (See Chapter 10.2 for dissipation potentials).
- ↑ Mielke, Alexander (2023). "An introduction to the analysis of gradient systems". Preprint on arXiv: (See Definition 3.1 on page 25 for dissipation potentials).
Original source: https://en.wikipedia.org/wiki/Rayleigh dissipation function.
Read more |