Reach (mathematics)

From HandWiki

Let X be a subset of Rn. Then the reach of X is defined as

[math]\displaystyle{ \text{reach}(X) := \sup \{r \in \mathbb{R}: \forall x \in \mathbb{R}^n\setminus X\text{ with }{\rm dist}(x,X) \lt r \text{ exists a unique closest point }y \in X\text{ such that }{\rm dist}(x,y)= {\rm dist}(x,X)\}. }[/math]

Examples

Shapes that have reach infinity include

  • a single point,
  • a straight line,
  • a full square, and
  • any convex set.

The graph of ƒ(x) = |x| has reach zero.

A circle of radius r has reach r.

References

  • Federer, Herbert (1969), Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, 153, New York: Springer-Verlag New York Inc., pp. xiv+676, ISBN 978-3-540-60656-7