Reeb vector field
From HandWiki
In mathematics, the Reeb vector field, named after the French mathematician Georges Reeb, is a notion that appears in various domains of contact geometry including:
- in a contact manifold, given a contact 1-form [math]\displaystyle{ \alpha }[/math], the Reeb vector field satisfies [math]\displaystyle{ R \in \mathrm{ker }\ d\alpha, \ \alpha (R) = 1 }[/math],[1][2]
- in particular, in the context of Sasakian manifold.
References
- Blair, David E. (2010). Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics. 203 (Second edition of 2002 original ed.). Boston, MA: Birkhäuser Boston, Ltd.. doi:10.1007/978-0-8176-4959-3. ISBN 978-0-8176-4958-6.
- McDuff, Dusa; Salamon, Dietmar (2017). Introduction to symplectic topology. Oxford Graduate Texts in Mathematics (Third edition of 1995 original ed.). Oxford: Oxford University Press. doi:10.1093/oso/9780198794899.001.0001. ISBN 978-0-19-879490-5.
Original source: https://en.wikipedia.org/wiki/Reeb vector field.
Read more |