Ribbon (mathematics)
In differential geometry, a ribbon (or strip) is the combination of a smooth space curve and its corresponding normal vector. More formally, a ribbon denoted by [math]\displaystyle{ (X,U) }[/math] includes a curve [math]\displaystyle{ X }[/math] given by a three-dimensional vector [math]\displaystyle{ X(s) }[/math], depending continuously on the curve arc-length [math]\displaystyle{ s }[/math] ([math]\displaystyle{ a\leq s \leq b }[/math]), and a unit vector [math]\displaystyle{ U(s) }[/math] perpendicular to [math]\displaystyle{ X }[/math] at each point.[1] Ribbons have seen particular application as regards DNA.[2]
Properties and implications
The ribbon [math]\displaystyle{ (X,U) }[/math] is called simple if [math]\displaystyle{ X }[/math] is a simple curve (i.e. without self-intersections) and closed and if [math]\displaystyle{ U }[/math] and all its derivatives agree at [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math]. For any simple closed ribbon the curves [math]\displaystyle{ X+\varepsilon U }[/math] given parametrically by [math]\displaystyle{ X(s)+\varepsilon U(s) }[/math] are, for all sufficiently small positive [math]\displaystyle{ \varepsilon }[/math], simple closed curves disjoint from [math]\displaystyle{ X }[/math].
The ribbon concept plays an important role in the Călugăreanu-White-Fuller formula,[3] that states that
- [math]\displaystyle{ Lk = Wr + Tw , }[/math]
where [math]\displaystyle{ Lk }[/math] is the asymptotic (Gauss) linking number, the integer number of turns of the ribbon around its axis; [math]\displaystyle{ Wr }[/math] denotes the total writhing number (or simply writhe), a measure of non-planarity of the ribbon's axis curve; and [math]\displaystyle{ Tw }[/math] is the total twist number (or simply twist), the rate of rotation of the ribbon around its axis.
Ribbon theory investigates geometric and topological aspects of a mathematical reference ribbon associated with physical and biological properties, such as those arising in topological fluid dynamics, DNA modeling and in material science.
See also
- Bollobás–Riordan polynomial
- Knots and graphs
- Knot theory
- DNA supercoil
- Möbius strip
References
- ↑ Blaschke, W. (1950) Einführung in die Differentialgeometrie. Springer-Verlag. ISBN 9783817115495
- ↑ Vologodskiǐ, Aleksandr Vadimovich (1992). Topology and Physics of Circular DNA (First ed.). Boca Raton, FL. p. 49. ISBN 978-1138105058. OCLC 1014356603.
- ↑ Fuller, F. Brock (1971). "The writhing number of a space curve". Proceedings of the National Academy of Sciences of the United States of America 68 (4): 815–819. doi:10.1073/pnas.68.4.815. PMID 5279522. PMC 389050. Bibcode: 1971PNAS...68..815B. http://www.pnas.org/content/68/4/815.full.pdf.
Bibliography
- Adams, Colin (2004), The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, American Mathematical Society, ISBN 0-8218-3678-1
- Călugăreanu, Gheorghe (1959), "L'intégrale de Gauss et l'analyse des nœuds tridimensionnels", Revue de Mathématiques Pure et Appliquées 4: 5–20
- Călugăreanu, Gheorghe (1961), "Sur les classes d'isotopie des noeuds tridimensionels et leurs invariants", Czechoslovak Mathematical Journal 11: 588–625, doi:10.21136/CMJ.1961.100486
- White, James H. (1969), "Self-linking and the Gauss integral in higher dimensions", American Journal of Mathematics 91 (3): 693–728, doi:10.2307/2373348
Original source: https://en.wikipedia.org/wiki/Ribbon (mathematics).
Read more |