Ricci soliton
In differential geometry, a complete Riemannian manifold [math]\displaystyle{ (M,g) }[/math] is called a Ricci soliton if, and only if, there exists a smooth vector field [math]\displaystyle{ V }[/math] such that
- [math]\displaystyle{ \operatorname{Ric}(g) = \lambda \, g - \frac{1}{2} \mathcal{L}_V g, }[/math]
for some constant [math]\displaystyle{ \lambda \in \mathbb{R} }[/math]. Here [math]\displaystyle{ \operatorname{Ric} }[/math] is the Ricci curvature tensor and [math]\displaystyle{ \mathcal{L} }[/math] represents the Lie derivative. If there exists a function [math]\displaystyle{ f: M \rightarrow \mathbb{R} }[/math] such that [math]\displaystyle{ V = \nabla f }[/math] we call [math]\displaystyle{ (M,g) }[/math] a gradient Ricci soliton and the soliton equation becomes
- [math]\displaystyle{ \operatorname{Ric}(g) + \nabla^2 f= \lambda \, g. }[/math]
Note that when [math]\displaystyle{ V = 0 }[/math] or [math]\displaystyle{ f = 0 }[/math] the above equations reduce to the Einstein equation. For this reason Ricci solitons are a generalization of Einstein manifolds.
Self-similar solutions to Ricci flow
A Ricci soliton [math]\displaystyle{ (M,g_0) }[/math] yields a self-similar solution to the Ricci flow equation
- [math]\displaystyle{ \partial_t g_t = -2 \operatorname{Ric}(g_t). }[/math]
In particular, letting
- [math]\displaystyle{ \sigma(t) := 1 - 2 \lambda t }[/math]
and integrating the time-dependent vector field [math]\displaystyle{ X(t) := \frac{1}{\sigma(t)} V }[/math] to give a family of diffeomorphisms [math]\displaystyle{ \Psi_t }[/math], with [math]\displaystyle{ \Psi_0 }[/math] the identity, yields a Ricci flow solution [math]\displaystyle{ (M, g_t) }[/math] by taking
- [math]\displaystyle{ g_t = \sigma(t) \Psi^\ast_t(g_0). }[/math]
In this expression [math]\displaystyle{ \Psi^\ast_t(g_0) }[/math] refers to the pullback of the metric [math]\displaystyle{ g_0 }[/math] by the diffeomorphism [math]\displaystyle{ \Psi_t }[/math]. Therefore, up to diffeomorphism and depending on the sign of [math]\displaystyle{ \lambda }[/math], a Ricci soliton homothetically shrinks, remains steady or expands under Ricci flow.
Examples of Ricci solitons
Shrinking ([math]\displaystyle{ \lambda \gt 0 }[/math])
- Gaussian shrinking soliton [math]\displaystyle{ (\mathbb{R}^n, g_{eucl}, f(x) = \frac{\lambda}{2}|x|^2) }[/math]
- Shrinking round sphere [math]\displaystyle{ S^n, n \geq 2 }[/math]
- Shrinking round cylinder [math]\displaystyle{ S^{n-1} \times \R, n \geq 3 }[/math]
- The four dimensional FIK shrinker [1]
- The four dimensional BCCD shrinker [2]
- Compact gradient Kahler-Ricci shrinkers [3][4][5]
- Einstein manifolds of positive scalar curvature
Steady ([math]\displaystyle{ \lambda = 0 }[/math])
- The 2d cigar soliton (a.k.a. Witten's black hole) [math]\displaystyle{ \left(\mathbb{R}^2, g = \frac{dx^2 + dy^2}{1 + x^2 + y^2}, V = -2 ( x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}) \right) }[/math]
- The 3d rotationally symmetric Bryant soliton and its generalization to higher dimensions [6]
- Ricci flat manifolds
Expanding ([math]\displaystyle{ \lambda \lt 0 }[/math])
- Expanding Kahler-Ricci solitons on the complex line bundles [math]\displaystyle{ O(-k), k\gt n }[/math] over [math]\displaystyle{ \mathbb{C}P^n, n \geq 1 }[/math].[1]
- Einstein manifolds of negative scalar curvature
Singularity models in Ricci flow
Shrinking and steady Ricci solitons are fundamental objects in the study of Ricci flow as they appear as blow-up limits of singularities. In particular, it is known that all Type I singularities are modeled on non-collapsed gradient shrinking Ricci solitons.[7] Type II singularities are expected to be modeled on steady Ricci solitons in general, however to date this has not been proven, even though all known examples are.
Notes
- ↑ 1.0 1.1 Feldman, Mikhail; Ilmanen, Tom; Knopf, Dan (2003), "Rotationally Symmetric Shrinking and Expanding Gradient Kähler-Ricci Solitons", Journal of Differential Geometry 65 (2): 169–209, doi:10.4310/jdg/1090511686
- ↑ Bamler, R.; Cifarelli, C.; Conlon, R.; Deruelle, A. (2022). "A new complete two-dimensional shrinking gradient Kähler-Ricci soliton". arXiv:2206.10785 [math.DG].
- ↑ Koiso, Norihito (1990), "On rotationally symmetric Hamilton's equation for Kahler-Einstein metrics", Recent Topics in Differential and Analytic Geometry, Advanced Studies in Pure Mathematics, 18-I, Academic Press, Boston, MA, pp. 327–337, doi:10.2969/aspm/01810327, ISBN 978-4-86497-076-1
- ↑ Cao, Huai-Dong (1996), "Existence of gradient Kähler-Ricci solitons", Elliptic and Parabolic Methods in Geometry (Minneapolis, MN, 1994), A K Peters, Wellesley, MA, pp. 1–16
- ↑ Wang, Xu-Jia; Zhu, Xiaohua (2004), "Kähler-Ricci solitons on toric manifolds with positive first Chern class", Advances in Mathematics 188 (1): 87–103, doi:10.1016/j.aim.2003.09.009
- ↑ Bryant, Robert L., Ricci flow solitons in dimension three with SO(3)-symmetries, https://services.math.duke.edu/~bryant/3DRotSymRicciSolitons.pdf
- ↑ Enders, Joerg; Müller, Reto; Topping, Peter M. (2011), "On Type I Singularities in Ricci flow", Communications in Analysis and Geometry 19 (5): 905–922, doi:10.4310/CAG.2011.v19.n5.a4
References
- Cao, Huai-Dong (2010). "Recent Progress on Ricci solitons". arXiv:0908.2006 [math.DG].
- Topping, Peter (2006), Lectures on the Ricci flow, Cambridge University Press, ISBN 978-0521689472
Original source: https://en.wikipedia.org/wiki/Ricci soliton.
Read more |