Ricci soliton

From HandWiki

In differential geometry, a complete Riemannian manifold [math]\displaystyle{ (M,g) }[/math] is called a Ricci soliton if, and only if, there exists a smooth vector field [math]\displaystyle{ V }[/math] such that

[math]\displaystyle{ \operatorname{Ric}(g) = \lambda \, g - \frac{1}{2} \mathcal{L}_V g, }[/math]

for some constant [math]\displaystyle{ \lambda \in \mathbb{R} }[/math]. Here [math]\displaystyle{ \operatorname{Ric} }[/math] is the Ricci curvature tensor and [math]\displaystyle{ \mathcal{L} }[/math] represents the Lie derivative. If there exists a function [math]\displaystyle{ f: M \rightarrow \mathbb{R} }[/math] such that [math]\displaystyle{ V = \nabla f }[/math] we call [math]\displaystyle{ (M,g) }[/math] a gradient Ricci soliton and the soliton equation becomes

[math]\displaystyle{ \operatorname{Ric}(g) + \nabla^2 f= \lambda \, g. }[/math]

Note that when [math]\displaystyle{ V = 0 }[/math] or [math]\displaystyle{ f = 0 }[/math] the above equations reduce to the Einstein equation. For this reason Ricci solitons are a generalization of Einstein manifolds.

Self-similar solutions to Ricci flow

A Ricci soliton [math]\displaystyle{ (M,g_0) }[/math] yields a self-similar solution to the Ricci flow equation

[math]\displaystyle{ \partial_t g_t = -2 \operatorname{Ric}(g_t). }[/math]

In particular, letting

[math]\displaystyle{ \sigma(t) := 1 - 2 \lambda t }[/math]

and integrating the time-dependent vector field [math]\displaystyle{ X(t) := \frac{1}{\sigma(t)} V }[/math] to give a family of diffeomorphisms [math]\displaystyle{ \Psi_t }[/math], with [math]\displaystyle{ \Psi_0 }[/math] the identity, yields a Ricci flow solution [math]\displaystyle{ (M, g_t) }[/math] by taking

[math]\displaystyle{ g_t = \sigma(t) \Psi^\ast_t(g_0). }[/math]

In this expression [math]\displaystyle{ \Psi^\ast_t(g_0) }[/math] refers to the pullback of the metric [math]\displaystyle{ g_0 }[/math] by the diffeomorphism [math]\displaystyle{ \Psi_t }[/math]. Therefore, up to diffeomorphism and depending on the sign of [math]\displaystyle{ \lambda }[/math], a Ricci soliton homothetically shrinks, remains steady or expands under Ricci flow.

Examples of Ricci solitons

Shrinking ([math]\displaystyle{ \lambda \gt 0 }[/math])

  • Gaussian shrinking soliton [math]\displaystyle{ (\mathbb{R}^n, g_{eucl}, f(x) = \frac{\lambda}{2}|x|^2) }[/math]
  • Shrinking round sphere [math]\displaystyle{ S^n, n \geq 2 }[/math]
  • Shrinking round cylinder [math]\displaystyle{ S^{n-1} \times \R, n \geq 3 }[/math]
  • The four dimensional FIK shrinker [1]
  • The four dimensional BCCD shrinker [2]
  • Compact gradient Kahler-Ricci shrinkers [3][4][5]
  • Einstein manifolds of positive scalar curvature

Steady ([math]\displaystyle{ \lambda = 0 }[/math])

  • The 2d cigar soliton (a.k.a. Witten's black hole) [math]\displaystyle{ \left(\mathbb{R}^2, g = \frac{dx^2 + dy^2}{1 + x^2 + y^2}, V = -2 ( x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}) \right) }[/math]
  • The 3d rotationally symmetric Bryant soliton and its generalization to higher dimensions [6]
  • Ricci flat manifolds

Expanding ([math]\displaystyle{ \lambda \lt 0 }[/math])

  • Expanding Kahler-Ricci solitons on the complex line bundles [math]\displaystyle{ O(-k), k\gt n }[/math] over [math]\displaystyle{ \mathbb{C}P^n, n \geq 1 }[/math].[1]
  • Einstein manifolds of negative scalar curvature

Singularity models in Ricci flow

Shrinking and steady Ricci solitons are fundamental objects in the study of Ricci flow as they appear as blow-up limits of singularities. In particular, it is known that all Type I singularities are modeled on non-collapsed gradient shrinking Ricci solitons.[7] Type II singularities are expected to be modeled on steady Ricci solitons in general, however to date this has not been proven, even though all known examples are.

Notes

  1. 1.0 1.1 Feldman, Mikhail; Ilmanen, Tom; Knopf, Dan (2003), "Rotationally Symmetric Shrinking and Expanding Gradient Kähler-Ricci Solitons", Journal of Differential Geometry 65 (2): 169–209, doi:10.4310/jdg/1090511686 
  2. Bamler, R.; Cifarelli, C.; Conlon, R.; Deruelle, A. (2022). "A new complete two-dimensional shrinking gradient Kähler-Ricci soliton". arXiv:2206.10785 [math.DG].
  3. Koiso, Norihito (1990), "On rotationally symmetric Hamilton's equation for Kahler-Einstein metrics", Recent Topics in Differential and Analytic Geometry, Advanced Studies in Pure Mathematics, 18-I, Academic Press, Boston, MA, pp. 327–337, doi:10.2969/aspm/01810327, ISBN 978-4-86497-076-1 
  4. Cao, Huai-Dong (1996), "Existence of gradient Kähler-Ricci solitons", Elliptic and Parabolic Methods in Geometry (Minneapolis, MN, 1994), A K Peters, Wellesley, MA, pp. 1–16 
  5. Wang, Xu-Jia; Zhu, Xiaohua (2004), "Kähler-Ricci solitons on toric manifolds with positive first Chern class", Advances in Mathematics 188 (1): 87–103, doi:10.1016/j.aim.2003.09.009 
  6. Bryant, Robert L., Ricci flow solitons in dimension three with SO(3)-symmetries, https://services.math.duke.edu/~bryant/3DRotSymRicciSolitons.pdf 
  7. Enders, Joerg; Müller, Reto; Topping, Peter M. (2011), "On Type I Singularities in Ricci flow", Communications in Analysis and Geometry 19 (5): 905–922, doi:10.4310/CAG.2011.v19.n5.a4 

References