Riesz mean

From HandWiki

In mathematics, the Riesz mean is a certain mean of the terms in a series. They were introduced by Marcel Riesz in 1911 as an improvement over the Cesàro mean[1][2]. The Riesz mean should not be confused with the Bochner–Riesz mean or the Strong–Riesz mean.

Definition

Given a series [math]\displaystyle{ \{s_n\} }[/math], the Riesz mean of the series is defined by

[math]\displaystyle{ s^\delta(\lambda) = \sum_{n\le \lambda} \left(1-\frac{n}{\lambda}\right)^\delta s_n }[/math]

Sometimes, a generalized Riesz mean is defined as

[math]\displaystyle{ R_n = \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k-\lambda_{k-1})^\delta s_k }[/math]

Here, the [math]\displaystyle{ \lambda_n }[/math] are a sequence with [math]\displaystyle{ \lambda_n\to\infty }[/math] and with [math]\displaystyle{ \lambda_{n+1}/\lambda_n\to 1 }[/math] as [math]\displaystyle{ n\to\infty }[/math]. Other than this, the [math]\displaystyle{ \lambda_n }[/math] are taken as arbitrary.

Riesz means are often used to explore the summability of sequences; typical summability theorems discuss the case of [math]\displaystyle{ s_n = \sum_{k=0}^n a_k }[/math] for some sequence [math]\displaystyle{ \{a_k\} }[/math]. Typically, a sequence is summable when the limit [math]\displaystyle{ \lim_{n\to\infty} R_n }[/math] exists, or the limit [math]\displaystyle{ \lim_{\delta\to 1,\lambda\to\infty}s^\delta(\lambda) }[/math] exists, although the precise summability theorems in question often impose additional conditions.

Special cases

Let [math]\displaystyle{ a_n=1 }[/math] for all [math]\displaystyle{ n }[/math]. Then

[math]\displaystyle{ \sum_{n\le \lambda} \left(1-\frac{n}{\lambda}\right)^\delta = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\Gamma(1+\delta)\Gamma(s)}{\Gamma(1+\delta+s)} \zeta(s) \lambda^s \, ds = \frac{\lambda}{1+\delta} + \sum_n b_n \lambda^{-n}. }[/math]

Here, one must take [math]\displaystyle{ c\gt 1 }[/math]; [math]\displaystyle{ \Gamma(s) }[/math] is the Gamma function and [math]\displaystyle{ \zeta(s) }[/math] is the Riemann zeta function. The power series

[math]\displaystyle{ \sum_n b_n \lambda^{-n} }[/math]

can be shown to be convergent for [math]\displaystyle{ \lambda \gt 1 }[/math]. Note that the integral is of the form of an inverse Mellin transform.

Another interesting case connected with number theory arises by taking [math]\displaystyle{ a_n=\Lambda(n) }[/math] where [math]\displaystyle{ \Lambda(n) }[/math] is the Von Mangoldt function. Then

[math]\displaystyle{ \sum_{n\le \lambda} \left(1-\frac{n}{\lambda}\right)^\delta \Lambda(n) = - \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\Gamma(1+\delta)\Gamma(s)}{\Gamma(1+\delta+s)} \frac{\zeta^\prime(s)}{\zeta(s)} \lambda^s \, ds = \frac{\lambda}{1+\delta} + \sum_\rho \frac {\Gamma(1+\delta)\Gamma(\rho)}{\Gamma(1+\delta+\rho)} +\sum_n c_n \lambda^{-n}. }[/math]

Again, one must take c > 1. The sum over ρ is the sum over the zeroes of the Riemann zeta function, and

[math]\displaystyle{ \sum_n c_n \lambda^{-n} \, }[/math]

is convergent for λ > 1.

The integrals that occur here are similar to the Nörlund–Rice integral; very roughly, they can be connected to that integral via Perron's formula.

References