Scorer's function

From HandWiki
Graph of [math]\displaystyle{ \mathrm{Gi}(x) }[/math] and [math]\displaystyle{ \mathrm{Hi}(x) }[/math]

In mathematics, the Scorer's functions are special functions studied by (Scorer 1950) and denoted Gi(x) and Hi(x).

Hi(x) and -Gi(x) solve the equation

[math]\displaystyle{ y''(x) - x\ y(x) = \frac{1}{\pi} }[/math]

and are given by

[math]\displaystyle{ \mathrm{Gi}(x) = \frac{1}{\pi} \int_0^\infty \sin\left(\frac{t^3}{3} + xt\right)\, dt, }[/math]
[math]\displaystyle{ \mathrm{Hi}(x) = \frac{1}{\pi} \int_0^\infty \exp\left(-\frac{t^3}{3} + xt\right)\, dt. }[/math]

The Scorer's functions can also be defined in terms of Airy functions:

[math]\displaystyle{ \begin{align} \mathrm{Gi}(x) &{}= \mathrm{Bi}(x) \int_x^\infty \mathrm{Ai}(t) \, dt + \mathrm{Ai}(x) \int_0^x \mathrm{Bi}(t) \, dt, \\ \mathrm{Hi}(x) &{}= \mathrm{Bi}(x) \int_{-\infty}^x \mathrm{Ai}(t) \, dt - \mathrm{Ai}(x) \int_{-\infty}^x \mathrm{Bi}(t) \, dt. \end{align} }[/math]

References