Segre class

From HandWiki

In mathematics, the Segre class is a characteristic class used in the study of cones, a generalization of vector bundles. For vector bundles the total Segre class is inverse to the total Chern class, and thus provides equivalent information; the advantage of the Segre class is that it generalizes to more general cones, while the Chern class does not. The Segre class was introduced in the non-singular case by Segre (1953).[1]. In the modern treatment of intersection theory in algebraic geometry, as developed e.g. in the definitive book of Fulton (1998), Segre classes play a fundamental role.[2]

Definition

Suppose [math]\displaystyle{ C }[/math] is a cone over [math]\displaystyle{ X }[/math], [math]\displaystyle{ q }[/math] is the projection from the projective completion [math]\displaystyle{ \mathbb{P}(C \oplus 1) }[/math] of [math]\displaystyle{ C }[/math] to [math]\displaystyle{ X }[/math], and [math]\displaystyle{ \mathcal{O}(1) }[/math] is the anti-tautological line bundle on [math]\displaystyle{ \mathbb{P}(C \oplus 1) }[/math]. Viewing the Chern class [math]\displaystyle{ c_1(\mathcal{O}(1)) }[/math] as a group endomorphism of the Chow group of [math]\displaystyle{ \mathbb{P}(C \oplus 1) }[/math], the total Segre class of [math]\displaystyle{ C }[/math] is given by:

[math]\displaystyle{ s(C) = q_* \left( \sum_{i \geq 0} c_1(\mathcal{O}(1))^{i} [\mathbb{P}(C \oplus 1)] \right). }[/math]

The [math]\displaystyle{ i }[/math]th Segre class [math]\displaystyle{ s_i(C) }[/math] is simply the [math]\displaystyle{ i }[/math]th graded piece of [math]\displaystyle{ s(C) }[/math]. If [math]\displaystyle{ C }[/math] is of pure dimension [math]\displaystyle{ r }[/math] over [math]\displaystyle{ X }[/math] then this is given by:

[math]\displaystyle{ s_i(C) = q_* \left( c_1(\mathcal{O}(1))^{r+i} [\mathbb{P}(C \oplus 1)] \right). }[/math]

The reason for using [math]\displaystyle{ \mathbb{P}(C \oplus 1) }[/math] rather than [math]\displaystyle{ \mathbb{P}(C) }[/math] is that this makes the total Segre class stable under addition of the trivial bundle [math]\displaystyle{ \mathcal{O} }[/math].

If Z is a closed subscheme of an algebraic scheme X, then [math]\displaystyle{ s(Z, X) }[/math] denote the Segre class of the normal cone to [math]\displaystyle{ Z \hookrightarrow X }[/math].

Relation to Chern classes for vector bundles

For a holomorphic vector bundle [math]\displaystyle{ E }[/math] over a complex manifold [math]\displaystyle{ M }[/math] a total Segre class [math]\displaystyle{ s(E) }[/math] is the inverse to the total Chern class [math]\displaystyle{ c(E) }[/math], see e.g. Fulton (1998).[3]

Explicitly, for a total Chern class

[math]\displaystyle{ c(E) = 1+c_1(E) + c_2(E) + \cdots \, }[/math]

one gets the total Segre class

[math]\displaystyle{ s(E) = 1 + s_1 (E) + s_2 (E) + \cdots \, }[/math]

where

[math]\displaystyle{ c_1(E) = -s_1(E), \quad c_2(E) = s_1(E)^2 - s_2(E), \quad \dots, \quad c_n(E) = -s_1(E)c_{n-1}(E) - s_2(E) c_{n-2}(E) - \cdots - s_n(E) }[/math]

Let [math]\displaystyle{ x_1, \dots, x_k }[/math] be Chern roots, i.e. formal eigenvalues of [math]\displaystyle{ \frac{ i \Omega }{ 2\pi} }[/math] where [math]\displaystyle{ \Omega }[/math] is a curvature of a connection on [math]\displaystyle{ E }[/math].

While the Chern class c(E) is written as

[math]\displaystyle{ c(E) = \prod_{i=1}^{k} (1+x_i) = c_0 + c_1 + \cdots + c_k \, }[/math]

where [math]\displaystyle{ c_i }[/math] is an elementary symmetric polynomial of degree [math]\displaystyle{ i }[/math] in variables [math]\displaystyle{ x_1, \dots, x_k }[/math]

the Segre for the dual bundle [math]\displaystyle{ E^\vee }[/math] which has Chern roots [math]\displaystyle{ -x_1, \dots, -x_k }[/math] is written as

[math]\displaystyle{ s(E^\vee) = \prod_{i=1}^{k} \frac {1} { 1 - x_i } = s_0 + s_1 + \cdots }[/math]

Expanding the above expression in powers of [math]\displaystyle{ x_1, \dots x_k }[/math] one can see that [math]\displaystyle{ s_i (E^\vee) }[/math] is represented by a complete homogeneous symmetric polynomial of [math]\displaystyle{ x_1, \dots x_k }[/math]

Properties

Here are some basic properties.

  • For any cone C (e.g., a vector bundle), [math]\displaystyle{ s(C \oplus 1) = s(C) }[/math].[4]
  • For a cone C and a vector bundle E,
    [math]\displaystyle{ c(E)s(C \oplus E) = s(C). }[/math][5]
  • If E is a vector bundle, then[6]
    [math]\displaystyle{ s_i(E) = 0 }[/math] for [math]\displaystyle{ i \lt 0 }[/math].
    [math]\displaystyle{ s_0(E) }[/math] is the identity operator.
    [math]\displaystyle{ s_i(E) \circ s_j(F) = s_j(F) \circ s_i(E) }[/math] for another vector bundle F.
  • If L is a line bundle, then [math]\displaystyle{ s_1(L) = -c_1(L) }[/math], minus the first Chern class of L.[6]
  • If E is a vector bundle of rank [math]\displaystyle{ e + 1 }[/math], then, for a line bundle L,
    [math]\displaystyle{ s_p(E \otimes L) = \sum_{i=0}^p (-1)^{p-i} \binom{e+p}{e+i} s_i(E) c_1(L)^{p-i}. }[/math][7]

A key property of a Segre class is birational invariance: this is contained in the following. Let [math]\displaystyle{ p: X \to Y }[/math] be a proper morphism between algebraic schemes such that [math]\displaystyle{ Y }[/math] is irreducible and each irreducible component of [math]\displaystyle{ X }[/math] maps onto [math]\displaystyle{ Y }[/math]. Then, for each closed subscheme [math]\displaystyle{ W \subset Y }[/math], [math]\displaystyle{ V = p^{-1}(W) }[/math] and [math]\displaystyle{ p_V: V \to W }[/math] the restriction of [math]\displaystyle{ p }[/math],

[math]\displaystyle{ {p_V}_*(s(V, X)) = \operatorname{deg}(p) \, s(W, Y). }[/math][8]

Similarly, if [math]\displaystyle{ f: X \to Y }[/math] is a flat morphism of constant relative dimension between pure-dimensional algebraic schemes, then, for each closed subscheme [math]\displaystyle{ W \subset Y }[/math], [math]\displaystyle{ V = f^{-1}(W) }[/math] and [math]\displaystyle{ f_V: V \to W }[/math] the restriction of [math]\displaystyle{ f }[/math],

[math]\displaystyle{ {f_V}^*(s(W, Y)) = s(V, X). }[/math][9]

A basic example of birational invariance is provided by a blow-up. Let [math]\displaystyle{ \pi: \widetilde{X} \to X }[/math] be a blow-up along some closed subscheme Z. Since the exceptional divisor [math]\displaystyle{ E := \pi^{-1}(Z) \hookrightarrow \widetilde{X} }[/math] is an effective Cartier divisor and the normal cone (or normal bundle) to it is [math]\displaystyle{ \mathcal{O}_E(E) := \mathcal{O}_X(E)|_E }[/math],

[math]\displaystyle{ \begin{align} s(E, \widetilde{X}) &= c(\mathcal{O}_E(E))^{-1} [E] \\ &= [E] - E \cdot [E] + E \cdot (E \cdot [E]) + \cdots, \end{align} }[/math]

where we used the notation [math]\displaystyle{ D \cdot \alpha = c_1(\mathcal{O}(D))\alpha }[/math].[10] Thus,

[math]\displaystyle{ s(Z, X) = g_* \left( \sum_{k=1}^{\infty} (-1)^{k-1} E^k \right) }[/math]

where [math]\displaystyle{ g: E = \pi^{-1}(Z) \to Z }[/math] is given by [math]\displaystyle{ \pi }[/math].

Examples

Example 1

Let Z be a smooth curve that is a complete intersection of effective Cartier divisors [math]\displaystyle{ D_1, \dots, D_n }[/math] on a variety X. Assume the dimension of X is n + 1. Then the Segre class of the normal cone [math]\displaystyle{ C_{Z/X} }[/math] to [math]\displaystyle{ Z \hookrightarrow X }[/math] is:[11]

[math]\displaystyle{ s(C_{Z/X}) = [Z] - \sum_{i=1}^n D_i \cdot [Z]. }[/math]

Indeed, for example, if Z is regularly embedded into X, then, since [math]\displaystyle{ C_{Z/X} = N_{Z/X} }[/math] is the normal bundle and [math]\displaystyle{ N_{Z/X} = \bigoplus_{i=1}^n N_{D_i/X}|_Z }[/math] (see Normal cone), we have:

[math]\displaystyle{ s(C_{Z/X}) = c(N_{Z/X})^{-1}[Z] = \prod_{i=1}^d (1-c_1(\mathcal{O}_X(D_i))) [Z] = [Z] - \sum_{i=1}^n D_i \cdot [Z]. }[/math]

Example 2

The following is Example 3.2.22. of Fulton (1998).[12] It recovers some classical results from Schubert's book on enumerative geometry.

Viewing the dual projective space [math]\displaystyle{ \breve{\mathbb{P}^3} }[/math] as the Grassmann bundle [math]\displaystyle{ p: \breve{\mathbb{P}^3} \to * }[/math] parametrizing the 2-planes in [math]\displaystyle{ \mathbb{P}^3 }[/math], consider the tautological exact sequence

[math]\displaystyle{ 0 \to S \to p^* \mathbb{C}^3 \to Q \to 0 }[/math]

where [math]\displaystyle{ S, Q }[/math] are the tautological sub and quotient bundles. With [math]\displaystyle{ E = \operatorname{Sym}^2(S^* \otimes Q^*) }[/math], the projective bundle [math]\displaystyle{ q: X = \mathbb{P}(E) \to \breve{\mathbb{P}^3} }[/math] is the variety of conics in [math]\displaystyle{ \mathbb{P}^3 }[/math]. With [math]\displaystyle{ \beta = c_1(Q^*) }[/math], we have [math]\displaystyle{ c(S^* \otimes Q^*) = 2 \beta + 2\beta^2 }[/math] and so, using Chern class,

[math]\displaystyle{ c(E) = 1 + 8 \beta + 30 \beta^2 + 60 \beta^3 }[/math]

and thus

[math]\displaystyle{ s(E) = 1 + 8 h + 34 h^2 + 92 h^3 }[/math]

where [math]\displaystyle{ h = -\beta = c_1(Q). }[/math] The coefficients in [math]\displaystyle{ s(E) }[/math] have the enumerative geometric meanings; for example, 92 is the number of conics meeting 8 general lines.

See also: Residual intersection.

Example 3

Let X be a surface and [math]\displaystyle{ A, B, D }[/math] effective Cartier divisors on it. Let [math]\displaystyle{ Z \subset X }[/math] be the scheme-theoretic intersection of [math]\displaystyle{ A + D }[/math] and [math]\displaystyle{ B + D }[/math] (viewing those divisors as closed subschemes). For simplicity, suppose [math]\displaystyle{ A, B }[/math] meet only at a single point P with the same multiplicity m and that P is a smooth point of X. Then[13]

[math]\displaystyle{ s(Z, X) = [D] + (m^2[P] - D \cdot [D]). }[/math]

To see this, consider the blow-up [math]\displaystyle{ \pi: \widetilde{X} \to X }[/math] of X along P and let [math]\displaystyle{ g: \widetilde{Z} = \pi^{-1}Z \to Z }[/math], the strict transform of Z. By the formula at #Properties,

[math]\displaystyle{ s(Z, X) = g_* ([\widetilde{Z}]) - g_*(\widetilde{Z} \cdot [\widetilde{Z}]). }[/math]

Since [math]\displaystyle{ \widetilde{Z} = \pi^* D + mE }[/math] where [math]\displaystyle{ E = \pi^{-1} P }[/math], the formula above results.

Multiplicity along a subvariety

Let [math]\displaystyle{ (A, \mathfrak{m}) }[/math] be the local ring of a variety X at a closed subvariety V codimension n (for example, V can be a closed point). Then [math]\displaystyle{ \operatorname{length}_A(A/\mathfrak{m}^t) }[/math] is a polynomial of degree n in t for large t; i.e., it can be written as [math]\displaystyle{ { e(A)^n \over n!} t^n + }[/math] the lower-degree terms and the integer [math]\displaystyle{ e(A) }[/math] is called the multiplicity of A.

The Segre class [math]\displaystyle{ s(V, X) }[/math] of [math]\displaystyle{ V \subset X }[/math] encodes this multiplicity: the coefficient of [math]\displaystyle{ [V] }[/math] in [math]\displaystyle{ s(V, X) }[/math] is [math]\displaystyle{ e(A) }[/math].[14]

References

  1. Segre 1953
  2. Fulton 1998
  3. Fulton 1998, p.50.
  4. Fulton 1998, Example 4.1.1.
  5. Fulton 1998, Example 4.1.5.
  6. 6.0 6.1 Fulton 1998, Proposition 3.1.
  7. Fulton 1998, Example 3.1.1.
  8. Fulton 1998, Proposition 4.2. (a)
  9. Fulton 1998, Proposition 4.2. (b)
  10. Fulton 1998, § 2.5.
  11. Fulton 1998, Example 9.1.1.
  12. Fulton 1998
  13. Fulton 1998, Example 4.2.2.
  14. Fulton 1998, Example 4.3.1.

Bibliography

  • Fulton, William (1998), Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 2 (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-540-62046-4 
  • {{citation|mr=0061420

|last=Segre|first= Beniamino |title=Nuovi metodi e resultati nella geometria sulle varietà algebriche|language=Italian