Semi-infinite programming

From HandWiki

In optimization theory, semi-infinite programming (SIP) is an optimization problem with a finite number of variables and an infinite number of constraints, or an infinite number of variables and a finite number of constraints. In the former case the constraints are typically parameterized.[1]

Mathematical formulation of the problem

The problem can be stated simply as:

[math]\displaystyle{ \min_{x \in X}\;\; f(x) }[/math]
[math]\displaystyle{ \text{subject to: } }[/math]
[math]\displaystyle{ g(x,y) \le 0, \;\; \forall y \in Y }[/math]

where

[math]\displaystyle{ f: R^n \to R }[/math]
[math]\displaystyle{ g: R^n \times R^m \to R }[/math]
[math]\displaystyle{ X \subseteq R^n }[/math]
[math]\displaystyle{ Y \subseteq R^m. }[/math]

SIP can be seen as a special case of bilevel programs in which the lower-level variables do not participate in the objective function.

Methods for solving the problem

In the meantime, see external links below for a complete tutorial.

Examples

In the meantime, see external links below for a complete tutorial.

See also

References

    • Bonnans, J. Frédéric; Shapiro, Alexander (2000). "5.4 and 7.4.4 Semi-infinite programming". Perturbation analysis of optimization problems. Springer Series in Operations Research. New York: Springer-Verlag. pp. 496–526 and 581. ISBN 978-0-387-98705-7. 
    • M. A. Goberna and M. A. López, Linear Semi-Infinite Optimization, Wiley, 1998.
    • Hettich, R.; Kortanek, K. O. (1993). "Semi-infinite programming: Theory, methods, and applications". SIAM Review 35 (3): 380–429. doi:10.1137/1035089. 
  • Edward J. Anderson and Peter Nash, Linear Programming in Infinite-Dimensional Spaces, Wiley, 1987.
  • Bonnans, J. Frédéric; Shapiro, Alexander (2000). "5.4 and 7.4.4 Semi-infinite programming". Perturbation analysis of optimization problems. Springer Series in Operations Research. New York: Springer-Verlag. pp. 496–526 and 581. ISBN 978-0-387-98705-7. 
  • M. A. Goberna and M. A. López, Linear Semi-Infinite Optimization, Wiley, 1998.
  • Hettich, R.; Kortanek, K. O. (1993). "Semi-infinite programming: Theory, methods, and applications". SIAM Review 35 (3): 380–429. doi:10.1137/1035089. 
  • David Luenberger (1997). Optimization by Vector Space Methods. John Wiley & Sons. ISBN 0-471-18117-X.
  • Rembert Reemtsen and Jan-J. Rückmann (Editors), Semi-Infinite Programming (Nonconvex Optimization and Its Applications). Springer, 1998, ISBN 0-7923-5054-5, 1998

External links