Semistable reduction theorem
In algebraic geometry, semistable reduction theorems state that, given a proper flat morphism [math]\displaystyle{ X \to S }[/math], there exists a morphism [math]\displaystyle{ S' \to S }[/math] (called base change) such that [math]\displaystyle{ X \times_S S' \to S' }[/math] is semistable (i.e., the singularities are mild in some sense). Precise formulations depend on the specific versions of the theorem. For example, if [math]\displaystyle{ S }[/math] is the unit disk in [math]\displaystyle{ \mathbb{C} }[/math], then "semistable" means that the special fiber is a divisor with normal crossings.[1]
The fundamental semistable reduction theorem for Abelian varieties by Grothendieck shows that if [math]\displaystyle{ A }[/math] is an Abelian variety over the fraction field [math]\displaystyle{ K }[/math] of a discrete valuation ring [math]\displaystyle{ \mathcal{O} }[/math], then there is a finite field extension [math]\displaystyle{ L/K }[/math] such that [math]\displaystyle{ A_{(L)} = A \otimes_K L }[/math] has semistable reduction over the integral closure [math]\displaystyle{ \mathcal{O}_L }[/math] of [math]\displaystyle{ \mathcal{O} }[/math] in [math]\displaystyle{ L }[/math]. Semistability here means more precisely that if [math]\displaystyle{ \mathcal{A}_L }[/math] is the Néron model of [math]\displaystyle{ A_{(L)} }[/math] over [math]\displaystyle{ \mathcal{O}_L, }[/math] then the fibres [math]\displaystyle{ \mathcal{A}_{L,s} }[/math] of [math]\displaystyle{ \mathcal{A}_L }[/math] over the closed points [math]\displaystyle{ s\in S=\mathrm{Spec}(\mathcal{O}_L) }[/math] (which are always a smooth algebraic groups) are extensions of Abelian varieties by tori.[2] Here [math]\displaystyle{ S }[/math] is the algebro-geometric analogue of "small" disc around the [math]\displaystyle{ s\in S }[/math], and the condition of the theorem states essentially that [math]\displaystyle{ A }[/math] can be thought of as a smooth family of Abelian varieties away from [math]\displaystyle{ s }[/math]; the conclusion then shows that after base change this "family" extends to the [math]\displaystyle{ s }[/math] so that also the fibres over the [math]\displaystyle{ s }[/math] are close to being Abelian varieties.
The important semistable reduction theorem for algebraic curves was first proved by Deligne and Mumford.[3] The proof proceeds by showing that the curve has semistable reduction if and only if its Jacobian variety (which is an Abelian variety) has semistable reduction; one then applies the theorem for Abelian varieties above.
References
- ↑ Morrison 1984, § 1.
- ↑ Grothendieck (1972), Théorème 3.6, p. 351
- ↑ Deligne & Mumford 1969, Corollary 2.7.
- Deligne, P.; Mumford, D. (1969). "The irreducibility of the space of curves of given genus". Publications Mathématiques de l'Institut des Hautes Scientifiques 36 (36): 75–109. doi:10.1007/BF02684599.
- Grothendieck, Alexandre (1972) (in fr). Groupes de Monodromie en Géométrie Algébrique. Lecture Notes in Mathematics. 288. Berlin; New York: Springer-Verlag. pp. viii+523. doi:10.1007/BFb0068688. ISBN 978-3-540-05987-5.
- Kempf, G.; Knudsen, Finn Faye; Mumford, David; Saint-Donat, B. (1973), Toroidal Embeddings I, Lecture Notes in Mathematics, 339, Berlin, New York: Springer-Verlag, doi:10.1007/BFb0070318, ISBN 978-3-540-06432-9
- Morrison, David R. (1984). "Chapter VI. The Clemens-Schmid exact sequence and applications". Topics in Transcendental Algebraic Geometry. (AM-106). pp. 101–120. doi:10.1515/9781400881659-007. ISBN 9781400881659. http://web.math.ucsb.edu/~drm/papers/clemens-schmid.pdf.
Further reading
- The Stacks Project Chapter 55: Semistable Reduction: Introduction, https://stacks.math.columbia.edu/tag/0C2Q
Original source: https://en.wikipedia.org/wiki/Semistable reduction theorem.
Read more |