Siegel identity
From HandWiki
Short description: One of two formulae that are used in the resolution of Diophantine equations
In mathematics, Siegel's identity refers to one of two formulae that are used in the resolution of Diophantine equations.
Statement
The first formula is
- [math]\displaystyle{ \frac{x_3 - x_1}{x_2 - x_1} + \frac{x_2 - x_3}{x_2 - x_1} = 1 . }[/math]
The second is
- [math]\displaystyle{ \frac{x_3 - x_1}{x_2 - x_1} \cdot\frac{t - x_2}{t - x_3} + \frac{x_2 - x_3}{x_2 - x_1} \cdot \frac{t - x_1}{t - x_3} = 1 . }[/math]
Application
The identities are used in translating Diophantine problems connected with integral points on hyperelliptic curves into S-unit equations.
See also
- Siegel formula
References
- Baker, Alan (1975). Transcendental Number Theory. Cambridge University Press. p. 40. ISBN 0-521-20461-5.
- Baker, Alan; Wüstholz, Gisbert (2007). Logarithmic Forms and Diophantine Geometry. New Mathematical Monographs. 9. Cambridge University Press. p. 53. ISBN 978-0-521-88268-2.
- Kubert, Daniel S.; Lang, Serge (1981). Modular Units. Grundlehren der Mathematischen Wissenschaften. 244. ISBN 0-387-90517-0.
- Lang, Serge (1978). Elliptic Curves: Diophantine Analysis. Grundlehren der mathematischen Wissenschaften. 231. Springer-Verlag. ISBN 0-387-08489-4.
- Smart, N. P. (1998). The Algorithmic Resolution of Diophantine Equations. London Mathematical Society Student Texts. 41. Cambridge University Press. pp. 36–37. ISBN 0-521-64633-2. https://archive.org/details/algorithmicresol0000smar/page/36.
Original source: https://en.wikipedia.org/wiki/Siegel identity.
Read more |