Signature operator

From HandWiki

In mathematics, the signature operator is an elliptic differential operator defined on a certain subspace of the space of differential forms on an even-dimensional compact Riemannian manifold, whose analytic index is the same as the topological signature of the manifold if the dimension of the manifold is a multiple of four.[1] It is an instance of a Dirac-type operator.

Definition in the even-dimensional case

Let [math]\displaystyle{ M }[/math] be a compact Riemannian manifold of even dimension [math]\displaystyle{ 2l }[/math]. Let

[math]\displaystyle{ d : \Omega^p(M)\rightarrow \Omega^{p+1}(M) }[/math]

be the exterior derivative on [math]\displaystyle{ i }[/math]-th order differential forms on [math]\displaystyle{ M }[/math]. The Riemannian metric on [math]\displaystyle{ M }[/math] allows us to define the Hodge star operator [math]\displaystyle{ \star }[/math] and with it the inner product

[math]\displaystyle{ \langle\omega,\eta\rangle=\int_M\omega\wedge\star\eta }[/math]

on forms. Denote by

[math]\displaystyle{ d^*: \Omega^{p+1}(M)\rightarrow \Omega^p(M) }[/math]

the adjoint operator of the exterior differential [math]\displaystyle{ d }[/math]. This operator can be expressed purely in terms of the Hodge star operator as follows:

[math]\displaystyle{ d^*= (-1)^{2l(p+1) + 2l + 1} \star d \star= - \star d \star }[/math]

Now consider [math]\displaystyle{ d + d^* }[/math] acting on the space of all forms [math]\displaystyle{ \Omega(M)=\bigoplus_{p=0}^{2l}\Omega^{p}(M) }[/math]. One way to consider this as a graded operator is the following: Let [math]\displaystyle{ \tau }[/math] be an involution on the space of all forms defined by:

[math]\displaystyle{ \tau(\omega)=i^{p(p-1)+l}\star \omega\quad,\quad\omega \in \Omega^p(M) }[/math]

It is verified that [math]\displaystyle{ d + d^* }[/math] anti-commutes with [math]\displaystyle{ \tau }[/math] and, consequently, switches the [math]\displaystyle{ (\pm 1) }[/math]-eigenspaces [math]\displaystyle{ \Omega_{\pm}(M) }[/math] of [math]\displaystyle{ \tau }[/math]

Consequently,

[math]\displaystyle{ d + d^* = \begin{pmatrix} 0 & D \\ D^* & 0 \end{pmatrix} }[/math]

Definition: The operator [math]\displaystyle{ d + d^* }[/math] with the above grading respectively the above operator [math]\displaystyle{ D: \Omega_+(M) \rightarrow \Omega_-(M) }[/math] is called the signature operator of [math]\displaystyle{ M }[/math].[2]

Definition in the odd-dimensional case

In the odd-dimensional case one defines the signature operator to be [math]\displaystyle{ i(d+d^*)\tau }[/math] acting on the even-dimensional forms of [math]\displaystyle{ M }[/math].

Hirzebruch Signature Theorem

If [math]\displaystyle{ l = 2k }[/math], so that the dimension of [math]\displaystyle{ M }[/math] is a multiple of four, then Hodge theory implies that:

[math]\displaystyle{ \mathrm{index}(D) = \mathrm{sign}(M) }[/math]

where the right hand side is the topological signature (i.e. the signature of a quadratic form on [math]\displaystyle{ H^{2k}(M)\ }[/math] defined by the cup product).

The Heat Equation approach to the Atiyah-Singer index theorem can then be used to show that:

[math]\displaystyle{ \mathrm{sign}(M) = \int_M L(p_1,\ldots,p_l) }[/math]

where [math]\displaystyle{ L }[/math] is the Hirzebruch L-Polynomial,[3] and the [math]\displaystyle{ p_i\ }[/math] the Pontrjagin forms on [math]\displaystyle{ M }[/math].[4]

Homotopy invariance of the higher indices

Kaminker and Miller proved that the higher indices of the signature operator are homotopy-invariant.[5]

See also

Notes

References