Slim lattice
From HandWiki
In lattice theory, a mathematical discipline, a finite lattice is slim if no three join-irreducible elements form an antichain.[1] Every slim lattice is planar. A finite planar semimodular lattice is slim if and only if it contains no cover-preserving diamond sublattice M3 (this is the original definition of a slim lattice due to George Grätzer and Edward Knapp).[2]
Notes
References
- Grätzer, George (2016). The congruences of a finite lattice. A "proof-by-picture" approach (2nd ed.). Cham, Switzerland: Birkhäuser/Springer. doi:10.1007/978-3-319-38798-7. ISBN 978-3-319-38796-3.
- Grätzer, George; Knapp, Edward (2007). "Notes on planar semimodular lattices. I. Construction". Acta Sci. Math. (Szeged) 73 (3–4): 445–462.
- Czédli, Gábor; Schmidt, E. Tamás (2012). "Slim semimodular lattices. I. A visual approach". Order 29 (3): 481–497. doi:10.1007/s11083-011-9215-3. http://www.math.u-szeged.hu/~czedli/publ.pdf/czedli-schmidt_slim-semimodular-lattices-I.pdf.
Original source: https://en.wikipedia.org/wiki/Slim lattice.
Read more |