Sphere theorem (3-manifolds)

From HandWiki
Short description: On when elements of the 2nd homotopy group of a 3-manifold can be embedded spheres


In mathematics, in the topology of 3-manifolds, the sphere theorem of Christos Papakyriakopoulos (1957) gives conditions for elements of the second homotopy group of a 3-manifold to be represented by embedded spheres.

One example is the following:

Let [math]\displaystyle{ M }[/math] be an orientable 3-manifold such that [math]\displaystyle{ \pi_2(M) }[/math] is not the trivial group. Then there exists a non-zero element of [math]\displaystyle{ \pi_2(M) }[/math] having a representative that is an embedding [math]\displaystyle{ S^2\to M }[/math].

The proof of this version of the theorem can be based on transversality methods, see Jean-Loïc Batude (1971).

Another more general version (also called the projective plane theorem, and due to David B. A. Epstein) is:

Let [math]\displaystyle{ M }[/math] be any 3-manifold and [math]\displaystyle{ N }[/math] a [math]\displaystyle{ \pi_1(M) }[/math]-invariant subgroup of [math]\displaystyle{ \pi_2(M) }[/math]. If [math]\displaystyle{ f\colon S^2\to M }[/math] is a general position map such that [math]\displaystyle{ [f]\notin N }[/math] and [math]\displaystyle{ U }[/math] is any neighborhood of the singular set [math]\displaystyle{ \Sigma(f) }[/math], then there is a map [math]\displaystyle{ g\colon S^2\to M }[/math] satisfying

  1. [math]\displaystyle{ [g]\notin N }[/math],
  2. [math]\displaystyle{ g(S^2)\subset f(S^2)\cup U }[/math],
  3. [math]\displaystyle{ g\colon S^2\to g(S^2) }[/math] is a covering map, and
  4. [math]\displaystyle{ g(S^2) }[/math] is a 2-sided submanifold (2-sphere or projective plane) of [math]\displaystyle{ M }[/math].

quoted in (Hempel 1976).

References

  • Hempel, John (1976). 3-manifolds. Annals of Mathematics Studies. 86. Princeton, NJ: Princeton University Press.