Spheroidal wave equation
From HandWiki
In mathematics, the spheroidal wave equation is given by
- [math]\displaystyle{ (1-t^2)\frac{d^2y}{dt^2} -2(b+1) t\, \frac{d y}{dt} + (c - 4qt^2) \, y=0 }[/math]
It is a generalization of the Mathieu differential equation.[1] If [math]\displaystyle{ y(t) }[/math] is a solution to this equation and we define [math]\displaystyle{ S(t):=(1-t^2)^{b/2}y(t) }[/math], then [math]\displaystyle{ S(t) }[/math] is a prolate spheroidal wave function in the sense that it satisfies the equation[2]
- [math]\displaystyle{ (1-t^2)\frac{d^2S}{dt^2} -2 t\, \frac{d S}{dt} + (c - 4q + b + b^2 + 4q(1-t^2) - \frac{b^2}{1-t^2} ) \, S=0 }[/math]
See also
References
- Bibliography
- M. Abramowitz and I. Stegun, Handbook of Mathematical function (US Gov. Printing Office, Washington DC, 1964)
- H. Bateman, Partial Differential Equations of Mathematical Physics (Dover Publications, New York, 1944)
![]() | Original source: https://en.wikipedia.org/wiki/Spheroidal wave equation.
Read more |