Spin squeezing

From HandWiki
Short description: Quantum process reducing the variance of spin along a particular axis

Spin squeezing is a quantum process that decreases the variance of one of the angular momentum components in an ensemble of particles with a spin. The quantum states obtained are called spin squeezed states.[1] Such states have been proposed for quantum metrology, to allow a better precision for estimating a rotation angle than classical interferometers.[2]

Mathematical definition

Spin squeezed states for an ensemble of spins have been defined analogously to squeezed states of a bosonic mode.[3] A quantum state always obeys the Heisenberg uncertainty relation

[math]\displaystyle{ (\Delta J_x)^2(\Delta J_y)^2 \geqslant \frac 1 4 |\langle J_z \rangle |^2, }[/math]

where [math]\displaystyle{ J_l }[/math] are the collective angular momentum components defined as [math]\displaystyle{ J_l=\sum_n j_l^{(n)}, }[/math] and [math]\displaystyle{ j_l^{(n)} }[/math] are the single particle angular momentum components. The state is spin-squeezed in the [math]\displaystyle{ x }[/math]-direction, if the variance of the [math]\displaystyle{ x }[/math]-component is smaller than the square root of the right-hand side of the inequality above

[math]\displaystyle{ (\Delta J_x)^2 \lt \frac 1 2 |\langle J_z \rangle |. }[/math]

It is important that [math]\displaystyle{ z }[/math] is the direction of the mean spin. A different definition was based on using states with a reduced spin-variance for metrology.[4]

Relations to quantum entanglement

Spin squeezed states can be proven to be entangled based on measuring the spin length and the variance of the spin in an orthogonal direction.[5] Let us define the spin squeezing parameter

[math]\displaystyle{ \xi_{\rm s}^2=N\frac{(\Delta J_x)^2} {|\langle J_z \rangle |^2} }[/math],

where [math]\displaystyle{ N }[/math] is the number of the spin-[math]\displaystyle{ 1/2 }[/math] particles in the ensemble. Then, if [math]\displaystyle{ \xi_{\rm s}^2 }[/math] is smaller than [math]\displaystyle{ 1 }[/math] then the state is entangled. It has also been shown that a higher and higher level of multipartite entanglement is needed to achieve a larger and larger degree of spin squeezing.[6]

Experiments with atomic ensembles

Experiments have been carried out with cold or even room temperature atomic ensembles.[7][8] In this case, the atoms do not interact with each other. Hence, in order to entangle them, they make them interact with light which is then measured. A 20 dB (100 times) spin squeezing has been obtained in such a system.[9] Simultaneous spin squeezing of two ensembles, which interact with the same light field, has been used to entangle the two ensembles.[10] Spin squeezing can be enhanced by using cavities.[11]

Cold gas experiments have also been carried out with Bose-Einstein Condensates (BEC).[12][13][14] In this case, the spin squeezing is due to the interaction between the atoms.

Most experiments have been carried out using only two internal states of the particles, hence, effectively with spin-[math]\displaystyle{ 1/2 }[/math] particles. There are also experiments aiming at spin squeezing with particles of a higher spin.[15][16] Nuclear-electron spin squeezing within the atoms, rather than interatomic spin squeezing, has also been created in room temperature gases.[17]

Creating large spin squeezing

Experiments with atomic ensembles are usually implemented in free-space with Gaussian laser beams. To enhance the spin squeezing effect towards generating non-Gaussian states,[18] which are metrologically useful, the free-space apparatuses are not enough. Cavities and nanophotonic waveguides have been used to enhance the squeezing effect with less atoms.[19] For the waveguide systems, the atom-light coupling and the squeezing effect can be enhanced using the evanescent field near to the waveguides, and the type of atom-light interaction can be controlled by choosing a proper polarization state of the guided input light, the internal state subspace of the atoms and the geometry of the trapping shape. Spin squeezing protocols using nanophotonic waveguides based on the birefringence effect[20] and the Faraday effect[21] have been proposed. By optimizing the optical depth or cooperativity through controlling the geometric factors mentioned above, the Faraday protocol demonstrates that, to enhance the squeezing effect, one needs to find a geometry that generates weaker local electric field at the atom positions.[21] This is counterintuitive, because usually to enhance atom-light coupling, a strong local field is required. But it opens the door to perform very precise measurement with little disruptions to the quantum system, which cannot be simultaneously satisfied with a strong field.

Generalized spin squeezing

In entanglement theory, generalized spin squeezing also refers to any criterion that is given with the first and second moments of angular momentum coordinates, and detects entanglement in a quantum state. For a large ensemble of spin-1/2 particles a complete set of such relations have been found,[22] which have been generalized to particles with an arbitrary spin.[23] Apart from detecting entanglement in general, there are relations that detect multipartite entanglement.[6][24] Some of the generalized spin-squeezing entanglement criteria have also a relation to quantum metrological tasks. For instance, planar squeezed states can be used to measure an unknown rotation angle optimally.[25]

References

  1. Ma, Jian; Wang, Xiaoguang; Sun, C.P.; Nori, Franco (2011-12-01). "Quantum spin squeezing". Physics Reports 509 (2–3): 89–165. doi:10.1016/j.physrep.2011.08.003. ISSN 0370-1573. Bibcode2011PhR...509...89M. 
  2. Gross, Christian (2012-05-14). "Spin squeezing, entanglement and quantum metrology with Bose–Einstein condensates" (in en). Journal of Physics B: Atomic, Molecular and Optical Physics 45 (10): 103001. doi:10.1088/0953-4075/45/10/103001. ISSN 0953-4075. Bibcode2012JPhB...45j3001G. http://stacks.iop.org/0953-4075/45/i=10/a=103001. Retrieved 2018-03-16. 
  3. Kitagawa, Masahiro; Ueda, Masahito (1993-06-01). "Squeezed spin states". Physical Review A 47 (6): 5138–5143. doi:10.1103/PhysRevA.47.5138. PMID 9909547. Bibcode1993PhRvA..47.5138K. https://ir.library.osaka-u.ac.jp/repo/ouka/all/77656/PhysRevA_47_06_005138.pdf. 
  4. Wineland, D. J.; Bollinger, J. J.; Itano, W. M.; Moore, F. L.; Heinzen, D. J. (1992-12-01). "Spin squeezing and reduced quantum noise in spectroscopy". Physical Review A 46 (11): R6797–R6800. doi:10.1103/PhysRevA.46.R6797. PMID 9908086. Bibcode1992PhRvA..46.6797W. 
  5. Sørensen, A.; Duan, L.-M.; Cirac, J. I.; Zoller, P. (2001-01-04). "Many-particle entanglement with Bose–Einstein condensates" (in En). Nature 409 (6816): 63–66. doi:10.1038/35051038. ISSN 1476-4687. PMID 11343111. Bibcode2001Natur.409...63S. 
  6. 6.0 6.1 Sørensen, Anders S.; Mølmer, Klaus (2001-05-14). "Entanglement and Extreme Spin Squeezing". Physical Review Letters 86 (20): 4431–4434. doi:10.1103/PhysRevLett.86.4431. PMID 11384252. Bibcode2001PhRvL..86.4431S. 
  7. Hald, J.; Sørensen, J. L.; Schori, C.; Polzik, E. S. (1999-08-16). "Spin Squeezed Atoms: A Macroscopic Entangled Ensemble Created by Light". Physical Review Letters 83 (7): 1319–1322. doi:10.1103/PhysRevLett.83.1319. Bibcode1999PhRvL..83.1319H. 
  8. Sewell, R. J.; Koschorreck, M.; Napolitano, M.; Dubost, B.; Behbood, N.; Mitchell, M. W. (2012-12-19). "Magnetic Sensitivity Beyond the Projection Noise Limit by Spin Squeezing". Physical Review Letters 109 (25): 253605. doi:10.1103/PhysRevLett.109.253605. PMID 23368463. Bibcode2012PhRvL.109y3605S. 
  9. Hosten, Onur; Engelsen, Nils J.; Krishnakumar, Rajiv; Kasevich, Mark A. (2016-01-28). "Measurement noise 100 times lower than the quantum-projection limit using entangled atoms" (in En). Nature 529 (7587): 505–508. doi:10.1038/nature16176. ISSN 1476-4687. PMID 26751056. Bibcode2016Natur.529..505H. 
  10. Julsgaard, Brian; Kozhekin, Alexander; Polzik, Eugene S. (2001-01-27). "Experimental long-lived entanglement of two macroscopic objects" (in En). Nature 413 (6854): 400–403. doi:10.1038/35096524. ISSN 1476-4687. PMID 11574882. Bibcode2001Natur.413..400J. 
  11. Leroux, Ian D.; Schleier-Smith, Monika H.; Vuletić, Vladan (2010-02-17). "Implementation of Cavity Squeezing of a Collective Atomic Spin". Physical Review Letters 104 (7): 073602. doi:10.1103/PhysRevLett.104.073602. PMID 20366881. Bibcode2010PhRvL.104g3602L. 
  12. Estève, J.; Gross, C.; Weller, A.; Giovanazzi, S.; Oberthaler, M. K. (2008-10-30). "Squeezing and entanglement in a Bose–Einstein condensate" (in En). Nature 455 (7217): 1216–1219. doi:10.1038/nature07332. ISSN 1476-4687. PMID 18830245. Bibcode2008Natur.455.1216E. 
  13. Muessel, W.; Strobel, H.; Linnemann, D.; Hume, D. B.; Oberthaler, M. K. (2014-09-05). "Scalable Spin Squeezing for Quantum-Enhanced Magnetometry with Bose-Einstein Condensates". Physical Review Letters 113 (10): 103004. doi:10.1103/PhysRevLett.113.103004. PMID 25238356. Bibcode2014PhRvL.113j3004M. 
  14. Riedel, Max F.; Böhi, Pascal; Li, Yun; Hänsch, Theodor W.; Sinatra, Alice; Treutlein, Philipp (2010-04-22). "Atom-chip-based generation of entanglement for quantum metrology" (in En). Nature 464 (7292): 1170–1173. doi:10.1038/nature08988. ISSN 1476-4687. PMID 20357765. Bibcode2010Natur.464.1170R. 
  15. Hamley, C. D.; Gerving, C. S.; Hoang, T. M.; Bookjans, E. M.; Chapman, M. S. (2012-02-26). "Spin-nematic squeezed vacuum in a quantum gas" (in En). Nature Physics 8 (4): 305–308. doi:10.1038/nphys2245. ISSN 1745-2481. Bibcode2012NatPh...8..305H. 
  16. Behbood, N.; Martin Ciurana, F.; Colangelo, G.; Napolitano, M.; Tóth, Géza; Sewell, R. J.; Mitchell, M. W. (2014-08-25). "Generation of Macroscopic Singlet States in a Cold Atomic Ensemble". Physical Review Letters 113 (9): 093601. doi:10.1103/PhysRevLett.113.093601. PMID 25215981. Bibcode2014PhRvL.113i3601B. 
  17. Fernholz, T.; Krauter, H.; Jensen, K.; Sherson, J. F.; Sørensen, A. S.; Polzik, E. S. (2008-08-12). "Spin Squeezing of Atomic Ensembles via Nuclear-Electronic Spin Entanglement". Physical Review Letters 101 (7): 073601. doi:10.1103/PhysRevLett.101.073601. PMID 18764532. Bibcode2008PhRvL.101g3601F. 
  18. Adesso, Gerardo; Ragy, Sammy; Lee, Antony R. (2014-03-12). "Continuous Variable Quantum Information: Gaussian States and Beyond". Open Systems & Information Dynamics 21 (1n02): 1440001. doi:10.1142/S1230161214400010. ISSN 1230-1612. Bibcode2014arXiv1401.4679A. 
  19. Chen, Zilong; Bohnet, J. G.; Weiner, J. M.; Cox, K. C.; Thompson, J. K. (2014). "Cavity-aided nondemolition measurements for atom counting and spin squeezing". Physical Review A 89 (4): 043837. doi:10.1103/PhysRevA.89.043837. Bibcode2014PhRvA..89d3837C. 
  20. Qi, Xiaodong; Baragiola, Ben Q.; Jessen, Poul S.; Deutsch, Ivan H. (2016). "Dispersive response of atoms trapped near the surface of an optical nanofiber with applications to quantum nondemolition measurement and spin squeezing". Physical Review A 93 (2): 023817. doi:10.1103/PhysRevA.93.023817. Bibcode2016PhRvA..93b3817Q. 
  21. 21.0 21.1 Qi, Xiaodong; Jau, Yuan-Yu; Deutsch, Ivan H. (2018-03-16). "Enhanced cooperativity for quantum-nondemolition-measurement–induced spin squeezing of atoms coupled to a nanophotonic waveguide". Physical Review A 97 (3): 033829. doi:10.1103/PhysRevA.93.033829. Bibcode2016PhRvA..93c3829K. 
  22. Tóth, Géza; Knapp, Christian; Gühne, Otfried; Briegel, Hans J. (2007-12-19). "Optimal Spin Squeezing Inequalities Detect Bound Entanglement in Spin Models". Physical Review Letters 99 (25): 250405. doi:10.1103/PhysRevLett.99.250405. PMID 18233503. Bibcode2007PhRvL..99y0405T. 
  23. Vitagliano, Giuseppe; Hyllus, Philipp; Egusquiza, Iñigo L.; Tóth, Géza (2011-12-09). "Spin Squeezing Inequalities for Arbitrary Spin". Physical Review Letters 107 (24): 240502. doi:10.1103/PhysRevLett.107.240502. PMID 22242980. Bibcode2011PhRvL.107x0502V. 
  24. Lücke, Bernd; Peise, Jan; Vitagliano, Giuseppe; Arlt, Jan; Santos, Luis; Tóth, Géza; Klempt, Carsten (2014-04-17). "Detecting Multiparticle Entanglement of Dicke States". Physical Review Letters 112 (15): 155304. doi:10.1103/PhysRevLett.112.155304. PMID 24785048. Bibcode2014PhRvL.112o5304L. 
  25. He, Q. Y.; Peng, Shi-Guo; Drummond, P. D.; Reid, M. D. (2011-08-11). "Planar quantum squeezing and atom interferometry". Physical Review A 84 (2): 022107. doi:10.1103/PhysRevA.84.022107. Bibcode2011PhRvA..84b2107H.