Stephens' constant

From HandWiki

Stephens' constant expresses the density of certain subsets of the prime numbers.[1][2] Let [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math] be two multiplicatively independent integers, that is, [math]\displaystyle{ a^m b^n \neq 1 }[/math] except when both [math]\displaystyle{ m }[/math] and [math]\displaystyle{ n }[/math] equal zero. Consider the set [math]\displaystyle{ T(a,b) }[/math] of prime numbers [math]\displaystyle{ p }[/math] such that [math]\displaystyle{ p }[/math] evenly divides [math]\displaystyle{ a^k - b }[/math] for some power [math]\displaystyle{ k }[/math]. Assuming the validity of the generalized Riemann hypothesis, the density of the set [math]\displaystyle{ T(a,b) }[/math] relative to the set of all primes is a rational multiple of

[math]\displaystyle{ C_S = \prod_p \left(1 - \frac{p}{p^3-1} \right) = 0.57595996889294543964316337549249669\ldots }[/math](sequence A065478 in the OEIS)

Stephens' constant is closely related to the Artin constant [math]\displaystyle{ C_A }[/math] that arises in the study of primitive roots.[3][4]

[math]\displaystyle{ C_S= \prod_{p} \left( C_A + \left( {{1-p^2}\over{p^2(p-1)}}\right) \right) \left({{p}\over{(p+1+{{1}\over{p}})}} \right) }[/math]

See also

References

  1. Stephens, P. J. (1976). "Prime Divisor of Second-Order Linear Recurrences, I.". Journal of Number Theory 8 (3): 313–332. doi:10.1016/0022-314X(76)90010-X. 
  2. Weisstein, Eric W.. "Stephens' Constant". http://mathworld.wolfram.com/StephensConstant.html. 
  3. Moree, Pieter; Stevenhagen, Peter (2000). "A two-variable Artin conjecture". Journal of Number Theory 85 (2): 291–304. doi:10.1006/jnth.2000.2547. 
  4. Moree, Pieter (2000). "Approximation of singular series and automata". Manuscripta Mathematica 101 (3): 385–399. doi:10.1007/s002290050222.