Structured text

From HandWiki
Short description: Programming language for programmable logic controllers


Structured text, abbreviated as ST or STX, is one of the five languages supported by the IEC 61131-3 standard, designed for programmable logic controllers (PLCs).[1][2] It is a high level language that is block structured and syntactically resembles Pascal, on which it is based.[3] All of the languages share IEC61131 Common Elements. The variables and function calls are defined by the common elements so different languages within the IEC 61131-3 standard can be used in the same program.

Complex statements and nested instructions are supported:

  • Iteration loops (REPEAT-UNTIL; WHILE-DO)
  • Conditional execution (IF-THEN-ELSE; CASE)[3]
  • Functions (SQRT(), SIN())

Sample program

(* simple state machine *)
TxtState := STATES[StateMachine];

CASE StateMachine OF
   1: ClosingValve();
      StateMachine := 2;
   2: OpeningValve();
ELSE
    BadCase();
END_CASE;

Unlike in some other programming languages, there is no fallthrough for the CASE statement: the first matching condition is entered, and after running its statements, the CASE block is left without checking other conditions.

Additional ST programming examples

// PLC configuration
CONFIGURATION DefaultCfg
    VAR_GLOBAL
        b_Start_Stop  : BOOL;         // Global variable to represent a boolean.
        b_ON_OFF      : BOOL;         // Global variable to represent a boolean.
        Start_Stop AT %IX0.0:BOOL;    // Digital   input of the PLC (Address 0.0)
        ON_OFF     AT %QX0.0:BOOL;    // Digital output of the PLC (Address 0.0). (Coil)
    END_VAR

    // Schedule the main program to be executed every 20 ms
    TASK Tick(INTERVAL := t#20ms);

    PROGRAM Main WITH Tick : Monitor_Start_Stop;
END_CONFIGURATION

PROGRAM Monitor_Start_Stop          // Actual Program
    VAR_EXTERNAL
        Start_Stop  : BOOL;
        ON_OFF      : BOOL;
    END_VAR
    VAR                             // Temporary variables for logic handling
        ONS_Trig    : BOOL;
        Rising_ONS  : BOOL;
    END_VAR

    // Start of Logic
    // Catch the Rising Edge One Shot of the Start_Stop input
    ONS_Trig    := Start_Stop AND NOT Rising_ONS;
    
    // Main Logic for Run_Contact -- Toggle ON / Toggle OFF ---
    ON_OFF := (ONS_Trig AND NOT ON_OFF) OR (ON_OFF AND NOT ONS_Trig);

    // Rising One Shot logic   
    Rising_ONS := Start_Stop;
END_PROGRAM

Function block example

//=======================================================================
// Function Block Timed Counter :  Incremental count of the timed interval
//=======================================================================
FUNCTION_BLOCK FB_Timed_Counter
    VAR_INPUT
        Execute         : BOOL := FALSE;        // Trigger signal to begin Timed Counting
        Time_Increment  : REAL := 1.25;         // Enter Cycle Time (Seconds) between counts
        Count_Cycles    : INT  := 20;           // Number of Desired Count Cycles
    END_VAR
    
    VAR_OUTPUT
        Timer_Done_Bit  : BOOL := FALSE;        // One Shot Bit indicating Timer Cycle Done
        Count_Complete  : BOOL := FALSE;        // Output Bit indicating the Count is complete            
        Current_Count   : INT  := 0;            // Accumulating Value of Counter
    END_VAR
    
    VAR
        CycleTimer      : TON;                  // Timer FB from Command Library
        CycleCounter    : CTU;                  // Counter FB from Command Library
        TimerPreset     : TIME;                 // Converted Time_Increment in Seconds to MS
    END_VAR
        
    // Start of Function Block programming
    TimerPreset := REAL_TO_TIME(in := Time_Increment) * 1000;

    CycleTimer(
        in := Execute AND NOT CycleTimer.Q,
        pt := TimerPreset);

    Timer_Done_Bit := CycleTimer.Q;
    
    CycleCounter(
        cu := CycleTimer.Q,
        r := NOT Execute,
        pv := Count_Cycles);

    Current_Count := CycleCounter.cv;
    Count_Complete := CycleCounter.q;
    
END_FUNCTION_BLOCK

References