Template:Analogous fixed-point theorems
From HandWiki
There are several fixed-point theorems which come in three equivalent variants: an algebraic topology variant, a combinatorial variant and a set-covering variant. Each variant can be proved separately using totally different arguments, but each variant can also be reduced to the other variants in its row. Additionally, each result in the top row can be deduced from the one below it in the same column.[1]
Algebraic topology | Combinatorics | Set covering |
---|---|---|
Brouwer fixed-point theorem | Sperner's lemma | Knaster–Kuratowski–Mazurkiewicz lemma |
Borsuk–Ulam theorem | Tucker's lemma | Lusternik–Schnirelmann theorem |
- ↑ Nyman, Kathryn L.; Su, Francis Edward (2013), "A Borsuk–Ulam equivalent that directly implies Sperner's lemma", American Mathematical Monthly 120 (4): 346–354, doi:10.4169/amer.math.monthly.120.04.346