Theta representation

From HandWiki

In mathematics, the theta representation is a particular representation of the Heisenberg group of quantum mechanics. It gains its name from the fact that the Jacobi theta function is invariant under the action of a discrete subgroup of the Heisenberg group. The representation was popularized by David Mumford.

Construction

The theta representation is a representation of the continuous Heisenberg group [math]\displaystyle{ H_3(\R) }[/math] over the field of the real numbers. In this representation, the group elements act on a particular Hilbert space. The construction below proceeds first by defining operators that correspond to the Heisenberg group generators. Next, the Hilbert space on which these act is defined, followed by a demonstration of the isomorphism to the usual representations.

Group generators

Let f(z) be a holomorphic function, let a and b be real numbers, and let [math]\displaystyle{ \tau }[/math] be fixed, but arbitrary complex number in the upper half-plane; that is, so that the imaginary part of [math]\displaystyle{ \tau }[/math] is positive. Define the operators Sa and Tb such that they act on holomorphic functions as

[math]\displaystyle{ (S_a f)(z) = f(z+a)= \exp (a \partial_z)f(z) }[/math]

and

[math]\displaystyle{ (T_b f)(z) = \exp (i\pi b^2 \tau +2\pi ibz) f(z+b\tau)= \exp( i\pi b^2 \tau + 2\pi i bz + b \tau \partial_z) f(z). }[/math]

It can be seen that each operator generates a one-parameter subgroup:

[math]\displaystyle{ S_{a_1} \left (S_{a_2} f \right ) = \left (S_{a_1} \circ S_{a_2} \right ) f = S_{a_1+a_2} f }[/math]

and

[math]\displaystyle{ T_{b_1} \left (T_{b_2} f \right ) = \left (T_{b_1} \circ T_{b_2} \right ) f = T_{b_1+b_2} f. }[/math]

However, S and T do not commute:

[math]\displaystyle{ S_a \circ T_b = \exp (2\pi iab) T_b \circ S_a. }[/math]

Thus we see that S and T together with a unitary phase form a nilpotent Lie group, the (continuous real) Heisenberg group, parametrizable as [math]\displaystyle{ H=U(1)\times\R\times\R }[/math] where U(1) is the unitary group.

A general group element [math]\displaystyle{ U_\tau(\lambda,a,b)\in H }[/math] then acts on a holomorphic function f(z) as

[math]\displaystyle{ U_\tau(\lambda,a,b) f(z)=\lambda (S_a \circ T_b f)(z) = \lambda \exp (i\pi b^2 \tau +2\pi ibz) f(z+a+b\tau) }[/math]

where [math]\displaystyle{ \lambda \in U(1). }[/math] [math]\displaystyle{ U(1) = Z(H) }[/math] is the center of H, the commutator subgroup [math]\displaystyle{ [H, H] }[/math]. The parameter [math]\displaystyle{ \tau }[/math] on [math]\displaystyle{ U_\tau(\lambda,a,b) }[/math] serves only to remind that every different value of [math]\displaystyle{ \tau }[/math] gives rise to a different representation of the action of the group.

Hilbert space

The action of the group elements [math]\displaystyle{ U_\tau(\lambda,a,b) }[/math] is unitary and irreducible on a certain Hilbert space of functions. For a fixed value of τ, define a norm on entire functions of the complex plane as

[math]\displaystyle{ \Vert f \Vert_\tau ^2 = \int_{\C} \exp \left( \frac {-\pi y^2} {\Im \tau} \right) |f(x+iy)|^2 \ dx \ dy. }[/math]

Here, [math]\displaystyle{ \Im \tau }[/math] is the imaginary part of [math]\displaystyle{ \tau }[/math] and the domain of integration is the entire complex plane.


Mumford sets the norm as [math]\displaystyle{ \int_{\C} \exp \left( \frac {-2\pi y^2} {\Im \tau} \right) |f(x+iy)|^2 \ dx \ dy }[/math], but in this way [math]\displaystyle{ T_b }[/math] is not unitary.

Let [math]\displaystyle{ \mathcal{H}_\tau }[/math] be the set of entire functions f with finite norm. The subscript [math]\displaystyle{ \tau }[/math] is used only to indicate that the space depends on the choice of parameter [math]\displaystyle{ \tau }[/math]. This [math]\displaystyle{ \mathcal{H}_\tau }[/math] forms a Hilbert space. The action of [math]\displaystyle{ U_\tau(\lambda,a,b) }[/math] given above is unitary on [math]\displaystyle{ \mathcal{H}_\tau }[/math], that is, [math]\displaystyle{ U_\tau(\lambda,a,b) }[/math] preserves the norm on this space. Finally, the action of [math]\displaystyle{ U_\tau(\lambda,a,b) }[/math] on [math]\displaystyle{ \mathcal{H}_\tau }[/math] is irreducible.

This norm is closely related to that used to define Segal–Bargmann space[citation needed].

Isomorphism

The above theta representation of the Heisenberg group is isomorphic to the canonical Weyl representation of the Heisenberg group. In particular, this implies that [math]\displaystyle{ \mathcal{H}_\tau }[/math] and [math]\displaystyle{ L^2(\R) }[/math] are isomorphic as H-modules. Let

[math]\displaystyle{ M(a,b,c) = \begin{bmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix} }[/math]

stand for a general group element of [math]\displaystyle{ H_3(\R). }[/math] In the canonical Weyl representation, for every real number h, there is a representation [math]\displaystyle{ \rho_h }[/math] acting on [math]\displaystyle{ L^2(\R) }[/math] as

[math]\displaystyle{ \rho_h(M(a,b,c)) \psi(x)= \exp (ibx+ihc) \psi(x+ha) }[/math]

for [math]\displaystyle{ x\in\R }[/math] and [math]\displaystyle{ \psi\in L^2(\R). }[/math]

Here, h is Planck's constant. Each such representation is unitarily inequivalent. The corresponding theta representation is:

[math]\displaystyle{ M(a,0,0) \to S_{ah} }[/math]
[math]\displaystyle{ M(0,b,0) \to T_{b/2\pi} }[/math]
[math]\displaystyle{ M(0,0,c) \to e^{ihc} }[/math]

Discrete subgroup

Define the subgroup [math]\displaystyle{ \Gamma_\tau\subset H_\tau }[/math] as

[math]\displaystyle{ \Gamma_\tau = \{ U_\tau(1,a,b) \in H_\tau : a,b \in \Z \}. }[/math]

The Jacobi theta function is defined as

[math]\displaystyle{ \vartheta(z; \tau) = \sum_{n=-\infty}^\infty \exp (\pi in^2 \tau + 2 \pi inz). }[/math]

It is an entire function of z that is invariant under [math]\displaystyle{ \Gamma_\tau. }[/math] This follows from the properties of the theta function:

[math]\displaystyle{ \vartheta(z+1; \tau) = \vartheta(z; \tau) }[/math]

and

[math]\displaystyle{ \vartheta(z+a+b\tau;\tau) = \exp(-\pi i b^2 \tau -2 \pi i b z)\vartheta(z;\tau) }[/math]

when a and b are integers. It can be shown that the Jacobi theta is the unique such function.

See also

References

  • David Mumford, Tata Lectures on Theta I (1983), Birkhäuser, Boston ISBN 3-7643-3109-7