Totative
From HandWiki
Short description: A coprime number less than a given integer
In number theory, a totative of a given positive integer n is an integer k such that 0 < k ≤ n and k is coprime to n. Euler's totient function φ(n) counts the number of totatives of n. The totatives under multiplication modulo n form the multiplicative group of integers modulo n.
Distribution
The distribution of totatives has been a subject of study. Paul Erdős conjectured that, writing the totatives of n as
- [math]\displaystyle{ 0 \lt a_1 \lt a_2 \cdots \lt a_{\phi(n)} \lt n , }[/math]
the mean square gap satisfies
- [math]\displaystyle{ \sum_{i=1}^{\phi(n)-1} (a_{i+1}-a_i)^2 \lt C n^2 / \phi(n) }[/math]
for some constant C, and this was proven by Bob Vaughan and Hugh Montgomery.[1]
See also
References
- ↑ Montgomery, H.L.; Vaughan, R.C. (1986). "On the distribution of reduced residues". Ann. Math.. 2 123: 311–333. doi:10.2307/1971274.
- Guy, Richard K. (2004). Unsolved problems in number theory (3rd ed.). Springer-Verlag. B40. ISBN 978-0-387-20860-2.
Further reading
- Sándor, Jozsef; Crstici, Borislav (2004), Handbook of number theory II, Dordrecht: Kluwer Academic, pp. 242–250, ISBN 1-4020-2546-7
External links
- Weisstein, Eric W.. "Totative". http://mathworld.wolfram.com/Totative.html.
- totative at PlanetMath.org.
Original source: https://en.wikipedia.org/wiki/Totative.
Read more |