Truncated power function

From HandWiki

In mathematics, the truncated power function[1] with exponent [math]\displaystyle{ n }[/math] is defined as

[math]\displaystyle{ x_+^n = \begin{cases} x^n &:\ x \gt 0 \\ 0 &:\ x \le 0. \end{cases} }[/math]

In particular,

[math]\displaystyle{ x_+ = \begin{cases} x &:\ x \gt 0 \\ 0 &:\ x \le 0. \end{cases} }[/math]

and interpret the exponent as conventional power.

Relations

  • Truncated power functions can be used for construction of B-splines.
  • [math]\displaystyle{ x \mapsto x_+^0 }[/math] is the Heaviside function.
  • [math]\displaystyle{ \chi_{[a,b)}(x) = (b-x)_+^0 - (a-x)_+^0 }[/math] where [math]\displaystyle{ \chi }[/math] is the indicator function.
  • Truncated power functions are refinable.

See also

External links

References

  1. Massopust, Peter (2010). Interpolation and Approximation with Splines and Fractals. Oxford University Press, USA. p. 46. ISBN 0-19-533654-2.