Turán's inequalities

From HandWiki

In mathematics, Turán's inequalities are some inequalities for Legendre polynomials found by Pál Turán (1950) (and first published by (Szegö 1948)). There are many generalizations to other polynomials, often called Turán's inequalities, given by (E. F. Beckenbach, W. Seidel & Otto Szász 1951) and other authors.

If Pn is the nth Legendre polynomial, Turán's inequalities state that

Pn(x)2>Pn1(x)Pn+1(x) for 1<x<1.


For Hn, the nth Hermite polynomial, Turán's inequalities are

Hn(x)2Hn1(x)Hn+1(x)=(n1)!i=0n12nii!Hi(x)2>0,

whilst for Chebyshev polynomials they are

Tn(x)2Tn1(x)Tn+1(x)=1x2>0 for 1<x<1.

See also

References

  • Beckenbach, E. F.; Seidel, W.; Szász, Otto (1951), "Recurrent determinants of Legendre and of ultraspherical polynomials", Duke Math. J. 18: 1–10, doi:10.1215/S0012-7094-51-01801-7 
  • Szegö, G. (1948), "On an inequality of P. Turán concerning Legendre polynomials", Bull. Amer. Math. Soc. 54 (4): 401–405, doi:10.1090/S0002-9904-1948-09017-6 
  • Turán, Paul (1950), "On the zeros of the polynomials of Legendre", Časopis Pěst. Mat. Fys. 75 (3): 113–122, doi:10.21136/CPMF.1950.123879