Tutorial:JMathLab/Equations (Nonlinear)

From HandWiki

Nonlinear Equations

"Equation" in the following means the equation expression = 0. Equations are solved for a symbolic variable x by the function solve(expression, x). If expression is a quotient, then nominator = 0 is solved. It uses the following strategy to solve equations:

  • Unordered List ItemFirst, all occurrences of the variable x in expression
  • are counted, both as free variable and embedded inside functions. Example:
  • In x3sin(x)+2x2x1 x occurs three times: as free
  • variable, in sin(x) and in x1.
  • Unordered List ItemIf this count is one, then we are dealing with a
  • polynomic equation, which is solved for the polynomial's main variable,
  • e.g. z. This works always, if the polynomial's degree is 2 or of it is
  • biquadratic, otherwise only, if the coefficients are constant. In the next
  • step the solution is solved for the desired variable x. As an example:
  • One can solve sin2(x)2sin(x)+1=0 for "x". It first solves
  • z22z+1=0 for $z$ and then sin(x)=z for "x". Examples with free
  • variables:

<jc lang="math"> syms x,b a=solve(x^2-1,x) printf('%f\n',a) a=solve(x^2-2*x*b+b^2,x) printf('%f\n',a) </jc>

An example with function variable (exp(jx)):

<jc lang="math"> syms x a=float( solve(sin(x)^2+2*cos(x)-0.5,x) ) printf('%f\n',a) </jc>

  • Unordered List ItemIf count is 2, only one case is further considered: The
  • variable occurs free and inside squareroot. This squareroot is then
  • isolated, the equation squared and solved. This case leads to additional
  • false solutions, which have to be sorted out manually.

<jc lang="math"> syms x y=x^2+3*x-17*sqrt(3*x^2+12); a=solve(y,x) printf('%f\n',a) </jc>