Ultrapolynomial

From HandWiki

In mathematics, an ultrapolynomial is a power series in several variables whose coefficients are bounded in some specific sense.

Definition

Let d and K a field (typically or ) equipped with a norm (typically the absolute value). Then a function P:KdK of the form P(x)=αdcαxα is called an ultrapolynomial of class {Mp}, if the coefficients cα satisfy |cα|CL|α|/Mα for all αd, for some L>0 and C>0 (resp. for every L>0 and some C(L)>0).

References

  • Lozanov-Crvenković, Z.; Perišić, D. (5 Feb 2007). "Kernel theorem for the space of Beurling - Komatsu tempered ultradistibutions". arXiv:math/0702093.
  • Lozanov-Crvenković, Z (October 2007). "Kernel theorems for the spaces of tempered ultradistributions". Integral Transforms and Special Functions 18 (10): 699–713. doi:10.1080/10652460701445658. 
  • Pilipović, Stevan; Pilipović, Bojan; Prangoski, Jasson (2021). "Infinite order $$\Psi $$DOs: Composition with entire functions, new Shubin-Sobolev spaces, and index theorem". Analysis and Mathematical Physics 11 (3). doi:10.1007/s13324-021-00545-w.